Analysis and calculation of inactive power in the power network of electric consumers of mining transport

Improving the quality of electric power of mining electric locomotives, which are powered through rectifiers of traction substations, is an important applied problem. The article develops a refined mathematical model for assessing the losses of inactive energy in the mining industry. An analysis of the materials of the works of the founders of the modern theory of inactive power and the above numerical verification calculations confirmed the validity of the Fryze and Budeanu theory and made it possible to establish qualitative and quantitative differences between reactive power and distortion power. It is noted that with the development of semiconductor converters of electrical energy, alternating current, used in power plants of mining equipment, primarily rectifiers and inverters, clarifications are required in the definitions of the components of inactive powers. It is shown that the magnitude of the distortion power can not only be indirectly determined through the balance of active, reactive and apparent power, but also calculated directly using calculation expressions that characterize the disproportions between the amplitudes and phase shifts of the corresponding voltage and current harmonics in case they deviate from the sinusoidal shape.. Numerical examples show the reasons why distortion power may be absent when the current waveform is clearly distorted relative to the voltage waveform and occur in the absence of distortion, when the current waveform is formally similar to the voltage waveform.

Keywords: non-sinusoidal current, reactive power, harmonic orthogonality, power balance, instantaneous power, shape correction.
For citation:

Shchurov N. I., Myatezh S. V., Malozyomov B. V. Analysis and calculation of inactive power in the power network of electric consumers of mining transport. MIAB. Mining Inf. Anal. Bull. 2022;(12-2):270—283. [In Russ]. DOI: 10.25018/0236_1493_2022_122_0_270.

Issue number: 12
Year: 2022
Page number: 270-283
ISBN: 0236-1493
UDK: 621.332
DOI: 10.25018/0236_1493_2022_122_0_270
Article receipt date: 24.01.2022
Date of review receipt: 27.09.2022
Date of the editorial board′s decision on the article′s publishing: 10.11.2022
About authors:

Shhurov N. I.1, Professor, Dr. Sci. (Eng.), Head of the department, e-mail:;
Myatezh S. V.1, Associate Professor, Cand. Sci. (Eng.), e-mail:;
Malozyomov B. V.1, Associate Professor, Cand. Sci. (Eng.), e-mail:;
1 Novosibirsk State Technical University.


For contacts:

Malozyomov B. V., e-mail:


1. Abramovich B. N. Uninterrupted power supply system for mining enterprises. Zapiski Gornogo instituta. 2018, vol. 229, pp. 31–40. [In Russ]. DOI: 10.25515/PMI.2018.1.31

2. Zhemerov G. G., Tugay D. V. Transition from reactive power to power losses in three-phase power supply systems. Bulletin of the National Technical University “Kharkiv Polytechnic Institute”. 2017, no. 27. pp.182–86. [In Russ].

3. Xiao Y., Wang Y., Sun Y. Reactive Power Optimal Control of a Wind Farm for Minimizing Collector System Losses. Energies. 2018, vol. 11,3177. DOI: 10.3390/ en11113177.

4. Lin S., He S., Zhang H., Liu M., Tang Z., Jiang H., Song Y. Robust. Optimal Allocation of Decentralized Reactive Power Compensation in Three-Phase Four-Wire Low-Voltage Distribution Networks Considering the Uncertainty of Photovoltaic Generation. Energies. 2019, vol. 12,2479. — DOI: 10.3390/en12132479.

5. Zhezhelenko I. V. Higher harmonics in power supply systems of industrial enterprises. Moscow, Energoatomizdat. 2010,375 p. [In Russ].

6. Abramov E. Y., Dedov S. I. Laboratory facility development for studying the heavy charge and discharge modes effect on the degradation of lithium-ion batteries. Journal of Physics: Conference Series. 2021, vol. 2032, no 1,012092. DOI: 10.1088/1742−6596/2032/ 1/012092.

7. Dogga R., Pathak M. K. Recent trends in solar PV inverter topologies. Sol. Energy. 2019, vol. 183, pp. 57–73. — DOI: 10.1016/j.solener.2019.02.065.

8. Chai Y., Guo L., Wang C., Liu Y., Zhao Z. Hierarchical Distributed Voltage Optimization Method for HV and MV Distribution Networks. IEEE Trans. Smart Grid. 2019. DOI: 10.1109/TSG.2019.2928701.

9. Barrero-González F., Pires V. F., Sousa J. L., Martins J. F., Milanés-Montero M. I., González-Romera E., Romero-Cadaval E. Photovoltaic Power Converter Management in Unbalanced Low Voltage Networks with Ancillary Services Support. Energies. 2019, vol. 12, p. 972. — DOI: 10.3390/en12060972.

10. Galanina T. V., Baumgarten M. I., Koroleva T. G. Ecological and economic modeling of the technogenic impact of a mining region on the environment and humans. MIAB. Mining Inf. Anal. Bull. 2019, no. 4, pp. 88–97. [In Russ]. DOI: 10.25018/0236-1493-201904−0-88−97.

11. Shchurov N. I., Dedov S. I., Malozyomov B. V., Shtang A. A., Martyushev N. V., Klyuev R. V., Andriashin S. N. Degradation of Lithium-Ion Batteries in an Electric Transport Complex. Energies. 2021, vol. 14,8072. en14238072.

12. Sarkar M. N. I., Meegahapola L. G., Datta M. Reactive Power Management in Renewable Rich Power Grids. A Review of Grid-Codes, Renewable Generators, Support Devices, Control Strategies and Optimization Algorithms. IEEE Access. 2018, vol. 6, pp. 41458–41489. — DOI: 10.1109/ACCESS.2018.2838563.

13. Benysek G. Pasko M. Power Theories for Improved Power Quality. Springer-Verlag, London,2012,214 p.

14. Zhuravlev A. G. Issues of optimizing the parameters of open pit transport systems. MIAB. Mining Inf. Anal. Bull. 2020, no. 3−1, pp. 583–601. [In Russ]. DOI: 10.25018/02361493-2020-31−0-583−601.

15. Zhemerov G. G., Tugai D. V. Dependence of additional losses in three-phase power supply systems on reactive power and pulsations of instantaneous active power. Tekhnichna elektrodinamika. 2015, no. 4, pp. 66–70. [In Russ].

16. Gandhi O., Rodríguez-Gallegos C. D., Gorla N. B. Y., Bieri M., Reindl T., Srinivasan D. Reactive Power Cost from PV Inverters Considering Inverter Lifetime Assessment. IEEE Trans. Sustain. Energy. 2019, vol. 10, pp. 738–747. DOI: 10.1109/TSTE.2018.2846544.

17. Sychev Yu. A., Alad’in M. E., Zimin R. Yu. Multifunctional filter-compensating devices in combined power supply systems of enterprises of the mineral resource complex. MIAB. MIAB. Mining Inf. Anal. Bull. 2022, no. 7, pp. 164–179. [In Russ]. DOI: 10.25018/0236_1493_2022_7_0_164

18. Akagi H., Kanazawa Y., Nabae A. Instantaneous reactive power compensator’s comprising switching device without energy storage components. IEEE Trans. Ind. Applications. 1984, vol. IA-20, pp. 625–630.

19. Shchurov N. I., Myatezh S. V., Malozyomov B. V., Shtang A. A., Martyushev N. V., Klyuev R. V., Dedov S. I. Determination of Inactive Powers in a Single-Phase AC Network. Energies. 2021, vol. 14,4814. DOI:10.3390/en14164814.

20. Abramov B. I., Ivanov A. G., Shilenkov V. A., Kuzmin I. K., Shevyrev Yu. V. Electric drive of modern mine hoisting machines. MIAB. Mining Inf. Anal. Bull. 2022, no. 5−2, pp. 145–162. [In Russ]. DOI: 10.25018/0236_1493_2022_52_0_145.

21. Myatezh S. V., Novolodskiy M. V, Kitova E. T. Definition of distortion power in AC network and analysis of its reasons. IOP Conference Series: Materials Science and Engineering. 2019, vol. 560, art.012113 (7 p.).

22. Hamrouni N., Younsi S., Jraidi M. A Flexible Active and Reactive Power Control Strategy of a LV Grid Connected PV System. Energy Procedia. 2019, vol. 162, pp. 325–338. — DOI: 10.1016/j.egypro.2019.04.034.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.