The analysis of belt conveyor models at different number of approximating masses

For the belt conveyor modeling, this study uses the method of systems composed of elements continuously distributed in finite spatial domains. The motion is transmitted from an element to an element, and the dynamic processes are described using equations with partial derivatives (wave equations). The analytical solution of the systems of such equations is a complex and labor-intensive process. It is possible to simplify calculations by splitting the system into the simplest elements and using the piece-wise linear approximation. This method allows an approximate description of the system with distributed parameters by a system of ordinary differential equations. In this case, the line of a belt conveyor is divided into a number of sections, and the law of variation of strain rate along the length is assumed to be linear within the limits of each section. Then, after certain assumptions for simplifying the model, the Lagrangian equations of the second kind are used. The authors compare the belt conveyor models with different numbers of concentrated masses and assess advantages of each models. The engineering problems solvable using these models are listed.

Keywords: belt conveyor, mathematical model, system with distributed parameters, system with concentrated parameters, Lagrangian equation of the second kind, Simulink, optimal number of approximating masses.
For citation:

Dmitrieva V. V., Sizin P. E. The analysis of belt conveyor models at different number of approximating masses. MIAB. Mining Inf. Anal. Bull. 2022;(1):34-46. [In Russ]. DOI: 10.25018/0236_1493_2022_1_0_34.

Issue number: 1
Year: 2022
Page number: 34-46
ISBN: 0236-1493
UDK: 622.647.2:004.942
DOI: 10.25018/0236_1493_2022_1_0_34
Article receipt date: 09.09.2021
Date of review receipt: 08.10.2021
Date of the editorial board′s decision on the article′s publishing: 10.12.2021
About authors:

V.V. Dmitrieva, Cand. Sci. (Eng.), Assistant Professor, e-mail:, Gubkin Russian State University of Oil and Gas (National Research University), 119991, Moscow, Russia,
P.E. Sizin, Cand. Sci. (Phys. Mathem.), Assistant Professor, e-mail:, Institute of Basic Education, National University of Science and Technology «MISiS», 119049, Moscow, Russia.


For contacts:

V.V. Dmitrieva, e-mail:


1. Solod G. I. On technological prerequisites for automation of conveyors and conveyor lines in the mining industry. Transport gornykh predpriyatiy [Transport of mining enterprises], Moscow, 1968.

2. Shakhmeyster L. G., Dmitriev V. G., Lobacheva A. K. Dinamika gruzopotokov i regulirovanie skorosti lentochnogo konveyera [Dynamics of cargo flows and speed control of a belt conveyor], Moscow, izd-vo MGI, 1974, 45 p.

3. Dmitrieva V. V. Razrabotka i issledovanie sistemy avtomaticheskoy stabilizatsii pogonnoy nagruzki magistral'nogo konveyera [Development and research of the system of automatic stabilization of the linear load of the main conveyor], Candidate’s thesis, Moscow, MGGU, 2005, 162 p.

4. Dmitrieva V. V., Sizin P. E. Upravlenie skorost'yu lenty konveyera v zavisimosti sluchaynogo gruzopotoka [Speed control of conveyor belt according to the random traffic], Moscow, Izdvo «Gornaya kniga», 2020, 72 p.

5. Fei Zeng, Cheng Yan, Qing Wu, Tao Wang Dynamic behaviour of a conveyor belt considering non-uniform bulk material distribution for speed control. Applied Sciences. 2020, vol. 10, no 13. DOI:10.3390/10134436.

6. Perun G., Lazarzt B., Opasiak T. Opportunities to improve the efficiency of the «GRAWEC 1200» belt conveyor. Transport Problems. 2020, vol. 15, no 4, part 2, pp. 215–226. DOI: 10.21307/tp-2020-061.

7. Dmitrieva V. V., Avkhadiev I. F., Sizin P. E. Use of advance hardware/software in multiple conveyor system automation. MIAB. Mining Inf. Anal. Bull. 2021, no. 2, pp. 150–163. [In Russ]. DOI: 10.25018/0236-1493-2021-2-0-150-163.

8. Rahman A., Robinson W. A., Carr M. J., Wheeler C. A dynamic analysis of the rail conveyor system. 13th International Conference on Bulk Materials, Storage, Handling & Transportation. Сonference Paper, 2019.

9. Zagolilo S. A., Semenov A. S., Semenova M. N., Yakushev I. A. Computer modeling of multi-motor electric drive system in MatLab software. Modeling, optimization and information technology. 2020, no 8(2). DOI: 10.26102/2310-6018/2020.29.2.012.

10. Rupali S. Tupkan, Devesh Kumar, Modak J. P., Saurabh Mathur Review of transient dynamics of belt conveyor. Dogo Rangsang Research Journal. 2020, vol. 10, issue 06, no 9. DOI: 10.46528/DRSRJ.2020.V10I06N09.09.

11. Gershun S. V. Avtomaticheskaya stabilizatsiya velichiny tyagovogo faktora magistral'nogo lentochnogo konveyera s dvukhdvigatel'nym privodom [Automatic stabilization of the traction factor of the main belt conveyor with a two-motor drive], Master's degree’s thesis, Moscow, MGGU, 2010.

12. Korneev A. P., Ababurko V. N. Modeling in systems with distributed parameters taking into account dissipation. SAPR i modelirovanie v sovremennoy elektronike. Sbornik nauchnykh trudov III Mezhdunarodnoy nauchno-prakticheskoy konferentsii [CAD and modeling in modern electronics. Collection of scientific papers of the III International Scientific and Practical Conference], Bryansk, 2019, pp. 222–225. [In Russ]. DOI: 10.30987 /conferencearticle_5e028212b4 49e4.31119706.

13. Korneev A. P., Lenevskiy G. S. Mathematical modeling of Electromechanical systems with distributed parameters in Matlab. SAPR i modelirovanie v sovremennoy elektronike. Sbornik nauchnykh trudov II Mezhdunarodnoy nauchno-prakticheskoy konferentsii [CAD and modeling in modern electronics. Collection of scientific papers of the II International Scientific and Practical Conference], Bryansk, 2018, pp. 63–66. [In Russ]. DOI: 10.30987/conferenceartic le_5c19e6a22fa4f6.29576500.

14. Yongbo Guo, Fansheng Wang Multi body dynamic equations of belt conveyor and the reasonable starting mode. Symmertry. 2020, vol. 12, no 9, article 1489. DOI: 10.3390/sym12091489.

15. Takagi K., Nishida G., Maschke B., Asaka K. Distributed parameter system modeling. Soft Actuators. Asaka K., Okuzaki H. (Eds.). Springer, Singapore. 2019, pp. 403–415. DOI: 10.1007/978-981-13-6850-9_24.

16. Zapenin I. V., Bel'for V. E., Selishchev Yu. A. Modelirovanie perekhodnykh protsessov lentochnykh konveyerov [Modeling of transient processes of belt conveyors], Moscow, Nedra, 1969, 56 p.

17. Miloradovic N., Vujanac R., Miloradovic D. M., Glisovic J. Determination of resistance to motion during operation of belt conveyor. Machines. Technologies. Materials. 2021, vol. 15, no 3, pp. 86–88.

18. Indraswari Kusumaningtyas, Ashley J. G. Nuttalli, Lodewijks G. Dynamics of multipledrive belt conveyors during starting. Applied Mechanics and Materials. 2016, vol. 842, pp. 141–146. DOI: 10.4028/

19. Sanjay Sakharwade, Shubhrata Nagpal Analysis of transient belt stretch for horizontal and inclined belt conveyor system. International Journal of Mathematical, Engineering and Management Sciences. 2019, vol. 4, no 5, pp. 1169–1179. DOI: 10.33889/IJMEMS.2019.4.5-092.

20. Lyubenets T. Determination of the tension of the conveyor belt of the conveyor belt. Sbornik nauchnykh trudov Natsional'nogo gornogo universiteta. 2020, no. 60, pp. 81–92. [In Russ]. DOI: 10.33271/crpnmu/60.081.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.