Bibliography: 1. Protosenya A. G., Katerov A. M. Substantiation of rheological model parameters for salt rock mass. MIAB. Mining Inf. Anal. Bull. 2023, no. 3, pp. 16—28. [In Russ]. DOI: 10.25018/0236_1493_2023_3_0_16.
2. Belyakov N. A., Belikov A. A. Prediction of the integrity of the water-protective stratum at the Verkhnekamskoye potash ore deposit. MIAB. Mining Inf. Anal. Bull. 2022, no. 6-2, pp. 33—46. [In Russ]. DOI: 10.25018/0236_1493_2022_62_0_33.
3. Mustafin M. G., Kologrivko A. A., Vasiliev B. Yu. Accuracy of digital terrain modeling based on periodic airborne laser scanning of a mining object. Gornyi Zhurnal. 2023, no. 2, pp. 56—62. [In Russ]. DOI: 10.17580/gzh.2023.02.09.
4. Karasev M. A., Petrushin V. V., Rysin A. I. The hybrid finite/discrete element method in description of macrostructural behavior of salt rocks. MIAB. Mining Inf. Anal. Bull. 2023, no. 4, pp. 48—66. [In Russ]. DOI: 10.25018/0236_1493_2023_4_0_48.
5. Kazanin O. I., Ilinets A. A. Ensuring the excavation workings stability when developing excavation sites of flat-lying coal seams by three workings. Journal of Mining Institute. 2022, vol. 253, pp. 41—48. [In Russ]. DOI: 10.31897/PMI.2022.1.
6. Protosenya A. G., Katerov A. M. Development of stress and strain state of combined support for a vertical shaft driven in salt massif. MIAB. Mining Inf. Anal. Bull. 2022, no. 6-1, pp. 100—113. [In Russ]. DOI: 10.25018/0236_1493_2022_61_0_100.
7. Ignatiev S. A., Sudarikov A. E., Imashev A. Zh. Modern mathematical forecast methods of maintenance and support conditions for mining tunnels. Journal of Mining Institute. 2019, vol. 238, pp. 371—375. [In Russ]. DOI: 10.31897/pmi.2019.4.371.
8. Malyushitskiy Yu. N. Ustoychivost' nasypey-otvalov [Stability of embankments-dumps], Kiev, Budivel'nik, 1975, 176 p.
9. Madabhushi G. Centrifuge modelling for civil engineers. CRC press, 2017. 324 р.
10. Abelev M. Yu. Slabye vodonasyshchennye glinistye grunty kak osnovaniya sooruzheniy [Weak water-saturated clay soils as foundations of structures], Moscow, Stroyizdat, 1973, 145 p.
11. Abelev M. Yu. Stroitel'stvo promyshlennykh i grazhdanskikh sooruzheniy na slabykh vodonasyshchennykh gruntakh [Construction of industrial and civil structures on weak watersaturated soils], Moscow, Stroyizdat, 1983, 249 p.
12. Amaryan L. S. Svoystva slabykh gruntov i metody ikh izucheniya [Properties of weak soils and methods of their study], Moscow, Nedra, 1990, 224 p.
13. Kutepov Y. I., Kutepova N. A., Karasev M. A., Kutepov Y. Yu. Prediction of shapeshifting of hydraulic waste dumps fill massifs when stockpiling waste embankments on them. Gornyi Zhurnal. 2016, no. 12, pp. 23—27. [In Russ]. DOI: 10.17580/gzh.2016.12.05.
14. Mirsayapov I. T., Koroleva I. V. Deformation of clay soils under regime long-term static loading. 17th European Conference on Soil Mechanics and Geotechnical Engineering, ECSMGE 2019-Proceedings. 2019. DOI: 10.32075/17ECSMGE-2019-0956.
15. Liu G., Xie Q., Fan G., Qian F., Qi C. Model test on bearing capacity characteristics of heat exchanger piles in saturated clays. Chinese Journal of Rock Mechanics and Engineering. 2017, vol. 36, no. 10, рр. 2535—2543. DOI: 10.13722/j.cnki.jrme.2017.0370.
16. Belyakov N. A., Emelyanov I. A. Development of approach to processing of stress state measurements by circular unloading method. News of the Tula state university. Sciences of Earth. 2022, no. 2, pp. 192—207. [In Russ]. DOI: 10.46689/2218-5194-2022-2-1-192-207.
17. Kozlovskiy E. Ya., Zhuravkov M. A. Determination and verification of the calculated model parameters of salt rocks taking into account softening and plastic flow. Journal of Mining Institute. 2021, vol. 247, pp. 33—38. [In Russ]. DOI: 10.31897/PMI.2021.1.4.
18. Kovalski E. R., Gromtsev K. V., Petrov D. N. Modeling deformation of rib pillars during backfill. MIAB. Mining Inf. Anal. Bull. 2020, no. 9, pp. 87—101. [In Russ]. DOI: 10.25018/02361493-2020-9-0-87-101.
19. Baryakh A. A., Devyatkov S. Yu., Denkevich E. T. Mathematical modeling of displacement during the potash ores mining by longwall faces. Journal of Mining Institute. 2023, vol. 259, pp. 13—20. [In Russ]. DOI: 10.31897/PMI.2023.11.
20. Wang D., Bienen B., Nazem M., Tian Y., Zheng J., Pucker T. Randolph M. Large deformation finite element analyses in geotechnical engineering. Computers and Geotechnics. 2015, vol. 65, рр. 104—114. DOI: 10.1016/j.compgeo.2014.12.005.
21. Zhang L. B., Cai Z. X., Liu H. F. A novel approach for simulation of soil-tool interaction based on an arbitrary Lagrangiane-Eulerian description. Soil and Tillage Research. 2018, vol. 178, pр. 41—49. DOI: 10.1016/j.still.2017.12.011.
22. Aubram D. Arbitrary Lagrangian-Eulerian method for penetration into sand at finite deformations. Shaker Verlag, Aachen, Germany, 2014.
23. Solimanab H. A., Shashcd A. Y., Hossainyc T. M., Abd-Rabouce M. Investigation of process parameters in orthogonal cutting using finite element approaches. Heliyon. 2020, vol. 6, no. 11. DOI: 10.1016/j.heliyon.2020.e05498.
24. Zhou W. H., Yin Z. Y. Practice of discrete element method in soil-structure interface modeling. Springer, 2022, 260 p. DOI: 10.1007/978-981-19-0047-1.
25. Xu W. J., Wang S., Zhang H. Y., Zhang Z. L. Discrete element modelling of a soil-rock mixture used in an embankment dam. International Journal of Rock Mechanics and Mining Sciences. 2016, vol. 86, рр. 141—156. DOI: 10.1016/j.ijrmms.2016.04.004.
26. Qiu G., Henke S., Grabe J. Application of a Coupled Eulerian —Lagrangian approach on geomechanical problems involving large deformations. Computers and Geotechnics. 2011, vol. 38, рр. 30—39. DOI: 10.1016/j.compgeo.2010.09.002.
27. Bui H. H. Smoothed particle hydrodynamics for soil mechanics. Numerical Methods in Geotechnical Engineering. 2006, рр. 275—281.
28. Liua G. R., Mao Z., Huan Y. SPH modeling for soil mechanics with application to landslides. Modeling in Geotechnical Engineering. 2021, рр. 257—289. DOI: 10.1016/B978-0-12821205-9.00004-6.
29. Yadong X., Jie Z., Hongwei H., Hongxin D. Analysis of Large Soil Rock Mixture Slope Based on DEM. 5th ISRM Young Scholars' Symposium on Rock Mechanics and International Symposium on Rock Engineering for Innovative Future. Okinawa, Japan, 2019.
30. Cardoso A., Borges J., Costa P., Gomes A., Marques J., Vieira C. Numerical methods in geotechnical engineering. Numerical Methods in Geotechnical Engineering IX. Proceedings of the 9th European Conference on Numerical Methods in Geotechnical Engineering (NUMGE 2018). 2018, Porto, Portugal, CRC Press, 2018. DOI: 10.1201/9781351003629.
31. Lingbo Zhang, Zongxi Cai, Liwei Wang, Runxi Zhang, Haofei Liu Coupled EulerianLagrangian finite element method for simulating soil-tool interaction. Biosystems Engineering. 2018, vol. 175, рр. 96—105. DOI: 10.1016/j.biosystemseng.2018.09.003.
32. Aubram D., Rackwitz F., Savidis S. Contribution to the non-lagrangian formulation of geotechnical and geomechanical processes. Holistic Simulation of Geotechnical Installation Processes: Theoretical Results and Applications, Springer International Publishing. 2017, pp. 53— 100.
33. Qiu G., Grabe J. Numerical investigation of bearing capacity due to spudcan penetration in sand overlying clay. Canadian Geotechnical Journal. 2012, vol. 49, no. 12, рр. 1393—1407. DOI: 10.1139/t2012-085.
34. Bui H. H., Fukagawa R., Sako K., Ohno S. Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic-plastic soil constitutive model. International Journal for Numerical and Analytical Methods in Geomechanics. 2008, vol. 32, no. 12, рр. 1537—1570. DOI: 10.1002/nag.688.
35. Peng C., Guo X. G., Wu W., Wang Y. Unified modelling of granular media with smoothed particle hydrodynamics. Acta Geotechnica. 2016, vol. 11, no. 6, рр. 1231—1247. DOI: 10.1007/ s11440-016-0496-y.
36. Zhan L., Peng C., Zhang B., Wu W. Three—dimensional modeling of granular flow impact on rigid and deformable structures. Computers and Geotechnics. 2019, vol. 112, pp. 257—271. DOI: 10.1016/j.compgeo.2019.03.019.
37. Dong X., Liu G., Li Z. L., Zeng W. A smoothed particle hydrodynamics (SPH) model for simulating surface erosion by impacts of foreign particles. Tribology International. 2016, vol. 95, рр. 267—278. DOI: 10.1016/j.triboint.2015.11.038.
38. Moresi L., Dufour F., Mühlhaus H. B. A Lagrangian integration point finite element method for large deformation modeling of viscoelastic geomaterials. Journal of Computational Physics. 2003, vol. 184, no. 2, рр. 476—497. DOI: 10.1016/S0021-9991(02)00031-1.
39. Bardenhagen S. G., Brackbill J. U., Sulsky D. The material-point method for granular materials. Computer Methods in Applied Mechanics and Engineering. 2000, vol. 187, no. 3-4, рр. 529—541. DOI: 10.1016/S0045-7825(99)00338-2.
40. Fern J., Rohe A., Soga K., Alonso E. The material point method for geotechnical engineering: a practical guide. CRC Press, 2019. DOI: 10.1201/9780429028090.
41. Brinkgreve R. B. J. Time-dependent behaviour of soft soils during embankment construction-a numerical study. Ninth International Symposium on'Numerical Models in Geomechanics. CRC Press/Balkema-Taylor & Francis Group. 2004, рр. 631—637.
42. Vermeer P. A., Neher H. P. A soft soil model that accounts for creep. Beyond 2000 in computational geotechnics. Routledge, 2019, рр. 249—261.
43. Yin Z. Y., Karstunen M., Chang C. S., Koskinen M., Lojander M. Modeling time-dependent behavior of soft sensitive clay. Journal of Geotechnical and Geoenvironmental Engineering. 2011, vol. 137, no. 11, рр. 1103—1113. DOI: 10.1061/(ASCE)GT.1943-5606.0000527.
44. Grimstad G., Degado S. A., Nordal S., Karstunen M. Modeling creep and rate effects in structured anisotropic soft clays. Acta Geotechnica. 2010, vol. 5, рр. 69—81. DOI: 10.1007/ s11440-010-0119-y.
45. Herle I., Gudehus G. Determination of parameters of a hypoplastic constitutive model from properties of grain assemblies. Mechanics of Cohesive-Frictional Materials. 1999, vol. 4, no. 5, рр. 461—486.
46. Chmelnizkij A., Nagula S., Grabe J. Numerical simulation of deep vibration compaction in Abaqus/CEL and MPM. Procedia Engineering. 2017, vol. 175, рр. 302—309. DOI: 10.1016/j. proeng.2017.01.031.
47. Mašín D. Clay hypoplasticity with explicitly defined asymptotic states. Acta Geotechnica. 2013, vol. 8, рр. 481—496. DOI: 10.1007/s11440-012-0199-y.
48. Mašín D. Clay hypoplasticity model including stiffness anisotropy. Géotechnique. 2014, vol. 64, no. 3, рр. 232—238. DOI: 10.1680/geot.13.P.065.
49. Mašín D., Rott J. Small strain stiffness anisotropy of natural sedimentary clays: review and a model. Acta Geotechnica. 2014, vol. 9, рр. 299—312. DOI: 10.1007/s11440-013-0271-2.
50. Dashko R. E. Inzhenerno-geologicheskiy analiz i otsenka vodonasyshchennykh glinistykh porod kak osnovaniya sooruzheniy [Engineering geological analysis and assessment of water-saturated clayey rocks as foundations for structures], Saint-Petersburg, Institut «PI Georekonstruktsiya», 2015.
51. ODM 218.4.4.002-2020 Metodicheskie rekomendatsii po ispol'zovaniyu sushchestvuyushchikh nasypey iz slabykh i obvodnennykh gruntov pri rekonstruktsii avtomobil'nykh dorog, available at: https://rosavtodor.gov.ru/storage/app/media/uploaded-files/218.4.4.002-2020.pdf (accessed 20.03.2023). [In Russ].
52. BS 1377-7 Methods of test for soils for civil engineering purposes. Shear strength tests (total stress), available at: https://www.gostinfo.ru/catalog/Details/?id=6754255 (accessed 20.03. 2023). [In Russ].
53. GOST 12248.3-2020. Opredelenie kharakteristik prochnosti i deformiruemosti metodom trekhosnogo szhatiya. Soils. Determination of strength and deformation parameters by triaxial compression testing, available at: https://docs.cntd.ru/document/566409062 (accessed 20.03.2023). [In Russ].
54. GOST 34276-2017. Metody laboratornogo opredeleniya udel'nogo soprotivleniya penetratsii. Soils. Methods of laboratory determination of the specific resistance to penetration, available at: https://docs.cntd.ru/document/1200157117 (accessed 20.03.2023). [In Russ].