The analysis of wear model of working members in ball mills during ore milling

The article discusses simulation modeling of apatite–nepheline ore milling process with determining wear parameters of mill lining in Rocky DEM. The analysis focuses on the wear and its types that arise in ball mills, and it is found that there are the abrasive, impact– abrasive and fatigue types of wear depending on the strength of the treated rocks and on the mode of motion of the treated media in the mill. The authors describe the tests aimed to determine the wear resistance indexes of materials used to manufacture working members of ball mills. From the modeling, it is found that ball lining experiences the impact–abrasive wear when operating in the mode of fall and the abrasive wear when operating in the cascade mode, and the linear wear in the latter case is on average 40–50% lower than in the other two modes. Using the program-calculated parameters of milling process, the service life of the model linings is determined. From the comparison of the testing and modeling data, it is concluded that the Archard wear equation used in the program enables sufficiently accurate modeling of wear processes in ball mills in different operating modes provided the required corrections are made for the physical and mechanical properties of the treated materials.

Keywords: abrasive and impact wear, mineral material milling, ball mill, lining wear, numerical modeling, DEM method, wear resistance index, Archard model.
For citation:

Plaschinsky V. A., Beloglazov I. I., Akhmerov E. V. The analysis of wear model of working members in ball mills during ore milling. MIAB. Mining Inf. Anal. Bull. 2024;(7):91–110. [In Russ]. DOI: 10.25018/0236_1493_2024_7_0_91.

Issue number: 7
Year: 2024
Page number: 91-110
ISBN: 0236-1493
UDK: 004.94
DOI: 10.25018/0236_1493_2024_7_0_91
Article receipt date: 20.02.2023
Date of review receipt: 26.01.2024
Date of the editorial board′s decision on the article′s publishing: 10.06.2024
About authors:

V.A. Plaschinsky1, Cand. Sci. (Eng.), e-mail:, ORCID ID: 0000-0003-0326-4514,
I.I. Beloglazov1, Cand. Sci. (Eng.), Assistant Professor, e-mail:, ORCID ID: 0000-0003-1692-4745,
E.V. Akhmerov1, Graduate Student, e-mail:, ORCID ID: 0000-0003-1692-4745,
1 Empress Catherine II Saint-Petersburg Mining University, 199106, Saint-Petersburg, Russia.


For contacts:

V.A. Plaschinsky, e-mail:


1. Pelevin A. E. Iron ore beneficiation technologies in Russia and ways to improve their efficiency. Journal of Mining Institute. 2022, vol. 256, pp. 579—592. [In Russ]. DOI: 10.31897/PMI.2022.61.

2. Ivanova P. V., Ivanov S. L., Mikhailov A. V., Shishlyannikov D. I. Extraction mechanization of soft soils. Journal of Applied Engineering Science. 2021, vol. 19, no. 3, pp. 610—617. DOI: 10.5937/ jaes19-31904.

3. Piirainen V. Y., Mikhailov A. V., Barinkov V. M., Starovoitov V. N. The use of sludge-peat composition for the processing of alumina production waste. Obogashchenie Rud. 2022, no. 6, pp. 51—58. [In Russ]. DOI: 10.17580/or.2022.06.09.

4. Gromyka D. S., Utenkova T. G., Korotkova O. Yu. Estimation methods of wear mechanisms in cutting heads of mining machines: Review. MIAB. Mining Inf. Anal. Bull. 2021, no. 2, pp. 75—86. [In Russ]. DOI: 10.25018/0236-14932021-2-0-75-86.

5. Bochkov V. S., Bolobov V. I. On the effect of hardening treatment of the lining material of ball mills on its wear resistance. Gornyi Zhurnal. 2017, no. 1, pp. 57—60. [In Russ]. DOI: 10.17580/ gzh.2017.01.12.

6. Shishlyannikov D. I., Zvonarev I. E., Rybin A. A., Zverev V. Yu., Ivanchenko A. A. Assessment of changes in the abrasiveness of solid particles in hydraulic mixtures pumped with ESPs. Applied Sciences. 2023, vol. 13, no. 3, article 1885. DOI: 10.3390/app13031885.

7. Bolobov V. I., Akhmerov E. V., Rakitin I. V. Influence of rock type on regularities of excavator bucket tooth crown wear. MIAB. Mining Inf. Anal. Bull. 2022, no. 6-2, pp. 189—204. [In Russ]. DOI: 10.25018/0236_1493_2022_62_0_189.

8. Hu Q., Ji D., Shen M., Zhuang H., Yao H., Zhao H., Guo H., Zhang Y. Three-body abrasive wear behavior of WC-10Cr3C2-12Ni coating for ball mill liner application. Materials. 2022, vol. 15, no. 13, article 4569. DOI: 10.3390/MA15134569.

9. Wu W., Che H., Hao Q. Research on non-uniform wear of liner in SAG mill. Processes. 2020, vol. 8, no. 12, article 1543. DOI: 10.3390/PR8121543.

10. Zixin Y., Peng Y., Yuxing, Tongqing T., Zhencai Z., Zhangfa Y., Guiyi W. Effect of the operating parameter and grinding media on the wear properties of lifter in ball mills. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology. 2020, vol. 234, pp. 1061— 1074. DOI:10.1177/1350650119894492.

11. Zixin Y., Peng Y., Tongqing L., Guiyi Wu DEM investigation of mill speed and lifter face angle on charge behavior in ball mills. IOP Conference Series: Materials Science and Engineering. 2018, vol. 394, no. 3, article 032084. DOI: 10.1088/1757-899X/394/3/032084.

12. Bolobov V. I., Chupin S. A., Akhmerov E. V., Plaschinskiy V. A. Comparative wear resistance of existing and prospective materials of fast-wearing elements of mining equipment. Materials Science Forum. 2021, vol. 1040, pp. 117—123. DOI: 10.4028/

13. Pryakhin E. I., Mikhailov A. V., Sivenkov A. V. Technological features of surface alloying of metal products with Cr-Ni complexes in the medium of melts of low-melting metals. Chernye Metally. 2023, no. 2, pp. 58—65. [In Russ]. DOI: 10.17580/chm.2023.02.09.

14. Bondarenko G. G., Andreev V. V., Stolyarov A. A., Tkachenko A. L. Modification of metal-oxide-semiconductor devices by electron injection in high fields. Vacuum. 2002, vol. 67, pp. 617—621. DOI: 10.1016/S0042-207X(02)00262-2.

15. Cleary P., Morrison R., Sinnott M. Prediction of slurry grinding due to media and coarse rock interactions in a 3D pilot SAG mill using a coupled DEM + SPH model. Minerals Engineering. 2020, vol. 159, article 106614. DOI: 10.1016/j.mineng.2020.106614.

16. Boemer D., Carretta Y., Laugier M., Legrand N., Papeleux L., Boman R., Ponthot J.-P. An advanced model of lubricated cold rolling with its comprehensive pilot mill validation. Journal of Materials Processing Technology. 2021, vol. 296, pp. 1—10. DOI: 10.1016/j.jmatprotec.2021.117175.

17. Karavaichenko M. G., Gazaleev L. I. Numerical modeling of a double-walled spherical reservoir. Journal of Mining Institute. 2020, vol. 245, pp. 561—568. [In Russ]. DOI: 10.31897/PMI. 2020.5.8.

18. Vishnyakov G. Yu., Pushkarev A. E., Botyan E. Yu., Khloponina V. S. Justification of rational modes of operation of quarry dump trucks in case of over-normative operation. MIAB. Mining Inf. Anal. Bull. 2023, no. 11-1, pp. 24—37. [In Russ]. DOI: 10.25018/0236_1493_2023_111_0_24.

19. Zhukov I. A., Golikov N. S., Martyushev N. V. Design rationalization of the scraper conveyor section by means of an automated method of strength characteristics analysis. Sustainable Development of Mountain Territories. 2022, vol. 14, no. 1, pp. 142—150. [In Russ]. DOI: 10.21177/1998-45022022-14-1-142-150.

20. Shammazov I., Karyakina E. The LNG flow simulation in stationary conditions through a pipeline with various types of insulating coating. Fluids. 2023, vol. 8, no. 2, article 68. DOI: 10.3390/ fluids8020068.

21. Karyakina E. D., Shammazov I. A., Voronov V. A., Shalygin A. V. The simulation of ultra-high molecular weight polyethylene cryogenic pipeline stress-strain state. Materials Science Forum. 2021, vol. 1031, pp. 132—140. DOI: 10.4028/

22. Liu Z.,Wang G., Guan W., Guo J., Sun G., Chen Z. Research on performance of a laboratoryscale SAG mill based on DEM-EMBD. Powder Technology. 2022, vol. 406, article 117581. DOI: 10.1016/J.POWTEC.2022.117581.

23. Cleary P., Delaney G., Sinnott M., Morrison R. Inclusion of incremental damage breakage of particles and slurry rheology into a particle scale multiphase model of a SAG mill. Minerals Engineering. 2018, vol. 128, pp. 92—105. DOI: 10.1016/j.mineng.2018.08.026.

24. Zixin Y., Tongqing L., Peng Y., Yuxing, Guiyi W. Effect of lifter shapes on the mill power in a ball mill. IOP Conference Series: Materials Science and Engineering. 2018, vol. 452, no. 4, article 042201. DOI: 10.1088/1757-899X/452/4/042201.

25. Gutiérrez A., Ahues D., González F., Merino P. Simulation of material transport in a SAG mill with different geometric lifter and pulp lifter attributes using DEM. Mining, Metallurgy and Exploration. 2019, vol. 36, pp. 431—440. DOI: 10.1007/s42461-018-0007-9.

26. Chimwani, Ngonidzashe, Bwalya Memory exploring the end-liner forces using DEM software. Minerals. 2020, vol. 10, article 1047. DOI: 10.3390/min10121047.

27. Kolahi S., Chegeni M. Investigation of the effect of the number of lifters on performance of pilot-scale SAG mills using discrete element method. Journal of Mining and Environment. 2020, vol. 11, pp. 675—693. DOI: 10.22044/jme.2020.9045.1793.

28. Ndimande C., Cleary P., Mainza A., Sinnott M. Using two-way coupled DEM-SPH to model an industrial scale Stirred Media Detritor. Minerals Engineering. 2019, vol. 137, pp. 259—276. DOI: 10.1016/j.mineng.2019.03.001.

29. Zhukovskiy Y. L., Korolev N. A., Malkova Y. M. Monitoring of grinding condition in drum mills based on resulting shaft torque. Journal of Mining Institute. 2022, vol. 256, pp. 686—700. [In Russ]. DOI: 10.31897/PMI.2022.91.

30. Saldaña M., Gálvez E., Navarra A., Toro N., Cisternas L. A. Optimization of the SAG grinding process using statistical analysis and machine learning: A case study of the chilean copper mining industry. Materials. 2023, vol. 16, article 3220. DOI: 10.3390/MA16083220.

31. Archard J. Contact and rubbing of flat surfaces. Journal of Applied Physics. 1953, vol. 24, pp. 981—988. DOI: 10.1063/1.1721448.

32. Fleischer G. Energetische methode der bestimmung des verschleisses. Schmierungstechnik. 1973, vol. 4, pp. 269—274.

33. Kragelsky I. V., Dobychin M. N., Kombalov V. S. Friction and wear. Pergamon Press, 1982, 484 р.

34. Lvov V. V., Chitalov L. S. Semi-autogenous wet grinding modeling with CFD-DEM. Minerals. 2021, vol. 11, article 485. DOI: 10.3390/min11050485.

35. Vasilyeva N. V., Erokhina O. O. Post-impact recovery coefficient calibration in DEM modeling of granular materials. Obogashchenie Rud. 2020, no. 4, pp. 42—48. [In Russ].

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.