Analysis of control quality of rotary mechanism drives in upright oxygen converters by simulation modeling

Electric drives of machines and equipment take a key part in implementation of process flows, and their control integrates various engineering solutions connected with production automation in mining and metallurgy. This makes modeling of operating modes of machinery drives a topical task. It is proposed to analyze the quality of control of the rotary mechanism drive in upright oxygen converter KVK-30C with an induction motor drive using the simulation modeling techniques. The source data were specifications of a real-life upright converter operated at the metallurgy workshop at Kola Mining and Metallurgy. Models were tested under maximal load with regard to both weight of the converter and weight of the molten metal. The molten metal weight is 6.88% of the total weight of the rotary structure, and tapping is carried out gradually. The ladle filling during tapping of crude copper totals less than 3%, no great drop happens in loading, and variation in loading during operation is inexpedient to analyze therefore. Modeling shows that the drive operates stably in all modes. The main figures of the control quality are: the time of transient and normal rating attainmen tstart = 0,64 s; the starter and steady-state currents and moments are within the ranges of the induction motor drive rating; the time of the full stop of the converter at all sustained speeds ranges as 0.7–0.8 s. In braking mode, positional precision is 1.17%, which conforms with the process requirements.

Keywords: mining and metallurgical industry, converter, ladle, drive, load, transient, control quality, simulation modeling, regulator.
For citation:

Petrov V. L., Kuznetsov N. M., Morozov I. N. Analysis of control quality of rotary mechanism drives in upright oxygen converters by simulation modeling. MIAB. Mining Inf. Anal. Bull. 2024;(1):169-179. [In Russ]. DOI: 10.25018/0236_1493_2024_1_0_169.

Acknowledgements:
Issue number: 1
Year: 2024
Page number: 169-179
ISBN: 0236-1493
UDK: 621.3.077.2
DOI: 10.25018/0236_1493_2024_1_0_169
Article receipt date: 17.08.2023
Date of review receipt: 30.10.2023
Date of the editorial board′s decision on the article′s publishing: 10.12.2023
About authors:

V.L. Petrov, Dr. Sci. (Eng.), Professor, National University of Science and Technology «MISiS», 119049, Moscow, Russia, e-mail: petrovv@misis.ru,
N.M. Kuznetsov, Cand. Sci. (Eng.), Leading Researcher, Northern Energetics Research Centre Kola Science Centre of Russian Academy of Sciences, 184209, Apatity, Russia, e-mail: kuzn55@mail.ru,
I.N. Morozov, Cand. Sci. (Eng.), Assistant Professor, Murmansk Arctic State University, 183038, Murmansk, Russia, e-mail: moroz.84@mail.ru.

 

For contacts:

V.L. Petrov, e-mail: petrovv@misis.ru.

Bibliography:

1. Vasilieva N. V., Fedorova E. R. Process control quality analysis. Tsvetnye Metally. 2020, no. 10, pp. 70—76. [In Russ]. DOI: 10.17580/tsm.2020.10.10.

2. Azzoug Y., Sahraoui M., Pusca R., Ameid T., Romary R., Cardoso A. J. M. High-performance vector control without AC phase current sensors for induction motor drives: Simulation and real-time implementation. ISA Transactions. 2021, vol. 109, pp. 295—306. DOI: 10.1016/j. isatra.2020.09.021.

3. Tikhonov N. O., Gospodarikov A. P. Accounting of dynamics of inter-mill charging movement in the time of calculation of power output of tumbling mills. Gornyi Zhurnal. 2014, no. 11, pp. 11—17. [In Russ].

4. Petrov V., Kuznetsov N., Morozov I. Experimental studies of energy technology indicators during ore crushing at a processing plant. Proceedings of IEEE Inteational Conference on Advent Trends in Multidisciplinary Research and Innovation (ICATMRI 2020), 2020, article 9398320. DOI: 10.1109/ICATMRI51801.2020.9398320.

5. Semenov A. S., Kuznetsov N. M. An analysis of the results of monitoring the quality of electric power in an underground mine. Izmeritel'naya tekhnika. 2014, no. 4, pp. 31—34. [In Russ].

6. Kuznetsov N. M., Morozov I. N. Behaviour of electric drive of roller-bit drilling rig swivel head with fuzzy control. Mining Science and Technology (Russia). 2022, vol. 7, no. 1, pp. 78—88. [In Russ]. DOI: 10.17073/2500-0632-2022-1-78-88.

7. Safronov P. A., Tsoraev V. T. On automation of ore grinding using computational methods for determining circulating load and other process parameters. Obogashchenie Rud. 2018, no. 4(376), pp. 44—50. [In Russ]. DOI: 10.17580/or.2018.04.09.

8. Szczepanski R., Tarczewski T., Grzesiak L. M. Application of optimization algorithms to adaptive motion control for repetitive process. ISA Transactions. 2021, vol. 115, pp. 192—205. DOI: 10.1016/j.isatra.2021.01.007.

9. Arpit G., Singh H. P., Pandey K. Advance speed control of three phase induction motor using field oriented control method. Materials Today: Proceedings. 2023, vol. 80, part 3, pp. 1981—1985. DOI:10.1016/j.matpr.2021.06.020.

10. Khakulov V. A., Krapivskiy E. I., Blayev B. Kh., Shapovalov V. A. Quality formation technology for Tyrnyauz deposit ores using preliminary sorting and beneficiation. Obogashchenie Rud. 2018, no. 5(377), pp. 33—39. [In Russ]. DOI: 10.17580/or.2018.05.06.

11. Fomin K. V. Simulation of loads on operating device of peat-cutting unit with regard to errors in the cutting elements arrangement. Mining Science and Technology (Russia). 2022, vol. 7, no. 2, pp. 161—169. [In Russ]. DOI: 10.17073/2500-0632-2022-2-161-169.

12. Petrov V. L., Kuznetsov N. M., Morozov I. N. Electric energy demand management in mining industry using smart power grids. MIAB. Mining Inf. Anal. Bull. 2022, no. 2, pp. 169—180. [In Russ]. DOI: 10.25018/0236_1493_2022_2_0_169.

13. Babokin G. I. Influence of longwall length on specific power consumption. MIAB. Mining Inf. Anal. Bull. 2023, no. 5, pp. 155—169. [In Russ]. DOI: 10.25018/0236_1493_2023_5_ 0_155.

14. Klyuev R. V., Khetagurov V. N., Gavrina O. A., Plieva M. T. Integrated analysis of electric energy demand of autogenous grinding mills at concentration factories. MIAB. Mining Inf. Anal. Bull. 2023, no. 5-1, pp. 145—156. [In Russ]. DOI: 10.25018/0236_1493_2023_51_0_145.

15. Sadridinov A. B. Analysis of energy performance of heading sets of equipment at a coal mine. Mining Science and Technology (Russia). 2020, vol. 5, no. 4, pp. 367—375. [In Russ]. DOI: 10.17073/2500-0632-2020-4-367-375.

16. Shprekher D. M., Babokin G. I., Zelenkov A. V., Ovsyannikov D. S. Universal computer model for studying the dynamics of a two-motor scraper conveyor. Izvestiya Vysshikh Uchebnykh Zavedenii. Elektromekhanika. 2021, vol. 64, no. 2, pp. 56—64. [In Russ]. DOI: 10.17213/0136-3360-2021-2-56-64.

17. Petrov V., Sadridinov A., Pichuev A. Research and analysis of the efficiency of power consumption in tunneling sections. Lecture Notes in Electrical Engineering. 2022, vol. 823, pp. 109—117. DOI: 10.1007/978-981-16-7472-3_9.

18. Abramov B. I., Ivanov A. G., Shilenkov V. A., Kuzmin I. K., Shevyrev Yu. V. Electric drive of modern mining machines. MIAB. Mining Inf. Anal. Bull. 2022, no. 5-2, pp. 145—162. [In Russ]. DOI: 10.25018/0236_1493_2022_52_0_145.

19. Terekhov V. M., Osipov O. I. Sistemy upravleniya elektroprivodov [Control systems of electric drives], Moscow, Akademiya, 2005, 304 p.

20. Terekhin V. B., Dement'ev Yu. N. Komp'yuternoe modelirovanie sistem elektroprivoda postoyannogo i peremennogo toka v Simulink [Computer simulation of direct and alternating current electric drive systems in Simulink], Tomsk, Izd-vo TPU, 2013, 307 p.

21. Indragandhi V., Selvamathi R., Subramaniyaswamy V. Introduction to electric drives and MATLAB drive blocks. Electric Motor Drives and their Applications with Simulation Practices. Academic Press. 2022, pp. 1—45. DOI: 10.1016/B978-0-323-91162-7.00001-1.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.