Behavior of the quality factor and its constituents in radar detection of voids at the rock–lining interface

One of the critical problems in underground construction and operation, in particular, in subway tunnels, is detection of voids at the rock–lining interface using the geophysical methods. One of the common approaches is the radar detection advantageous for the promptness, continuity of data acquisition and for the high resolution of the results. On the other hand, there are some disadvantages such as complex interpretation of results and the noise interference which is especially acute in underground excavations. It is possible to abate the impact of these factors using additional information obtained from calculations of attributes. This study analyzes the behavior of such attribute as the quality factor Q using the modeling data and in-situ information on the tunnel lining in the Moscow Metro. It is found that the values of Q differ highly in case of a void and when the void is absent. However, Q is incapable sometimes to identify a defect. The analysis of the Q factor components (used to calculate Q), namely, the spectrum maximum frequency fmax and the inverse width of the spectrum peak in the center frequency range of the radar, f–1, shows that the major contribution to the behavior of Q is max made by f–1, while f behaves chaotically. On this ground, it is possible to deduce an inference on the efficiency of the mentioned attributes and on the advisability of integrating them in the attribute sets.


Keywords: lining, tunnel, void, radar detection, noise, quality factor, attribute.
For citation:

Nabatov V. V., Utkina A. V. Behavior of the quality factor and its constituents in radar detection of voids at the rock–lining interface. MIAB. Mining Inf. Anal. Bull. 2022;(6):142155. [In Russ]. DOI: 10.25018/0236_1493_2022_6_0_142.


The study was supported by the Russian Foundation for Basic Research, Project No. 20-05-00341.

Issue number: 6
Year: 2022
Page number: 142-155
ISBN: 0236-1493
UDK: 550.8:528.854:[624.19:625.42]
DOI: 10.25018/0236_1493_2022_6_0_142
Article receipt date: 19.01.2022
Date of review receipt: 18.03.2022
Date of the editorial board′s decision on the article′s publishing: 10.05.2022
About authors:

V.V. Nabatov1, Cand. Sci. (Eng.), Assistant Professor, e-mail:, ORCID ID: 0000-0002-0047-0462,
A.V. Utkina1, Graduate Student, е-mail:,
1 National University of Science and Technology «MISiS», 119049, Moscow, Russia.


For contacts:

V.V. Nabatov, e-mail:


1. Jifei W., Hongwei H., Xiongyao X., Bobet A. Void-induced liner deformation and stress redistribution. Tunnelling and Underground Space Technology. 2014, vol. 40, pp. 263–276. DOI: 10.1016/j.tust.2013.10.008.

2. Zaprudin A. G. Substantiation of engineering solutions in the system of defense of urban surrounding from effect of mining works in metro construction. Izvestiya vysshikh uchebnykh zavedenii. Gornyi zhurnal. 2008, no. 7, pp. 11–18. [In Russ].

3. Pisetskiy V. B., Vlasov S. V., Zudilin A. E., Samsonov V. I., Shinkaryuk V. A. Forecast of stability of rock mass on the basis of 3D-3C-seysmolocation method in the process of tunneling of transport tunnels. Izvestiya vysshikh uchebnykh zavedenii. Gornyi zhurnal. 2012, no. 3, pp. 130–138. [In Russ].

4. Davis A. G., Lim M. K., Petersen C. G. Rapid and economical evaluation of concrete tunnel linings. NDT&E International. 2005, vol. 38, pp. 181—186. DOI: 10.1016/j.ndteint.2004.03.011.

5. Hai Liu, Xiongyao Xie, Motoyuki Sato Accurate thickness estimation of a backfill grouting layer behind shield tunnel lining by CMP measurement using GPR. 14th International Conference on Ground Penetrating Radar (GPR). 2012. DOI: 10.1109/ICGPR.2012.6254848.

6. Chuan Li, Meng-Juan Lia, Yong-Gui Zhao, Hao Liu, Zhou Wan, Jiang-Chun Xu, Xiao-Ping Xu, Yan Chen, Bin Wang Layer recognition and thickness evaluation of tunnel lining based on ground penetrating radar measurements. Journal of Applied Geophysics. 2011, vol. 73, pp. 45— 48. DOI: 10.1016/j.jappgeo.2010.11.004.

7. Forte E., Pipan M., Casabianca D., Di C. R., Riva A. Imaging and characterization of a carbonate hydrocarbon reservoir analogue using GPR attributes. Journal of Applied Geophysics. 2012, vol. 81, pp. 76–87.

8. Knight R., Tercier P., Jol H. The role of ground penetrating radar and geostatistics in reservoir description. The Leading Edge. 1997, vol. 16, pp. 1576—1581. DOI: 10.1190/1.1437526.

9. Fedorova L. L., Sokolov K. O., Kulyandin G. A. Georadar exploration of ground conditions in dredge areas. Gornyi Zhurnal. 2015, no. 4, pp. 10—14. [In Russ]. DOI: 10.17580/gzh.2015.04.02.

10. Shkuratnik V. L., Nikolenko P. V., Kormnov A. A. Ultrasonic correlation logging for roof rock structure diagnostics. Journal of Mining Science. 2015, vol. 51, no. 3, pp. 456—461. DOI: 10.1134/S1062739115030059.

11. Chaudhary M. Effectiveness of impact echo testing in detecting flaws in prestressed concrete slabs. Construction and Building Materials. 2013, vol. 47, pp. 753–759. DOI: 10.1016/j. conbuildmat.2013.05.021.

12. Aggelis D. G., Shiotani T., Kasai K. Evaluation of grouting in tunnel lining using impact-echo. Tunnelling and Underground Space Technology. 2008, vol. 23, pp. 629–637. DOI: 10.1016/j.tust.2007.12.001.

13. Sokolov K. O. Frequency-time presentation of georadar profiles based on continuous wavelet transform. Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh. 2014, no. 2, pp. 77—81. [In Russ].

14. Shkuratnik V. L., Nikolenko P. V., Koshelev A. E. Spectral characteristics of acoustic emission in loaded coal specimens for failure prediction. Journal of Mining Science. 2017, vol. 53, no. 5, pp. 818—823. DOI: 10.1134/S1062739117052825.

15. Aggelis D. G., Shiotani T., Kasai K. Evaluation of grouting in tunnel lining using impact-echo. Tunnelling and Underground Space Technology. 2008, vol. 23, pp. 629—637. DOI: 10.1016/j.tust.2007.12.001.

16. Song K., Cho G. Bonding state evaluation of tunnel shotcrete applied on to hard rocks using the impact-echo method. NDT&E International. 2009, vol. 42, pp. 487–500. DOI: 10.1016/j. ndteint.2009.02.007.

17. Verma A. K., Soumi Chaki, Aurobinda Routray, Mohanty W. K., Mamata Jenamani. Quantification of sand fraction from seismic attributes using Neuro-Fuzzy approach. Journal of Applied Geophysics. 2014, vol. 111, pp. 141–155. DOI: 10.1016/j.jappgeo.2014.10.005.

18. Denisov R. R., Kapustin V. V. Computerized georadar data processing. Russian Geophysics. 2010, no. 4, pp. 76—80. [In Russ].

19. Nabatov V. V., Voznesenskiy A. S. Georadar detection of voids at the soil-lining interface in subway tunnels. Gornyi Zhurnal. 2015, no. 2, pp. 15—20. [In Russ]. DOI: 10.17580/gzh.2015.02.03.

20. Nabatov V. V. Information entropy as an identifier in rock mass structure determination using low-frequency radars. Journal of Mining Science. 2017, vol. 53, no. 2, pp. 190—200. DOI: 10.1134/S1062739117022295.

21. Lu G., Zhao W., Forte E., Tian G., Li Y., Pipan M. Multi-frequency and multi-attribute GPR data fusion based on 2-D wavelet transform. Measurement. 2020, vol. 166, article 108243. DOI: 10.1016/j.measurement.2020.108243

22. Liu Z., Li J., Liu Y., Liu C., Li C., Zhou D. Analyzing the behavior of GPR wave propagation in zinc contaminated soil combining the dielectric properties—experimental study. Acta Geophysica. 2021, vol. 69, pp. 483—495. DOI: 10.1007/s11600-021-00552-2.

23. Fan C., Zhi-Rong Z., Yun-Fei D., Yu B., Chang-Qing X., Xiao-Feng J. Correction of seismic attribute-based small-structure prediction errors using GPR data. A case study of the Shuguang Coal Mine, Shanxi. Applied Geophysics. 2020, vol. 17, no. 4, pp. 489−500. DOI: 10.1007/s11770-020-0841-7.

24. Andrianov S. V. GPR monitoring of space between lining and rock in underground mines. MIAB. Mining Inf. Anal. Bull. 2019, no. 5, pp. 124–132. [In Russ]. DOI: 10.25018/0236-14932019-05-0-124-132.

25. Peng M., Wang D., Liu L., Shi Z., Shen J., Ma F. Recent advances in the GPR detection of grouting defects behind shield tunnel segments. Remote Sensing. 2021, vol. 13, no. 22, article 4596. DOI:10.3390/rs13224596.

26. Mapping voids, debonding, delaminations, moisture, and other defects behind or within tunnel linings. TRB’s second Strategic Highway Research Program (SHRP 2) Report S2-R06GRR-1. 2013, pp. 555. DOI: 10.17226/22609.

27. Vartanov A. Z., Kovpak I. V., Titov N. E. Geocontrolling for shielddriving of shal-low sewers. MIAB. Mining Inf. Anal. Bull. 2005, no. 7, pp. 87—92. [In Russ].

28. Eremenko A. V., Zverev E. O., Klepikova S. M., Monahov V. V. GPR survey in the presence of reinforced concrete structures. Prospect and protection of mineral resources. 2004, no. 12, pp. 26—28. [In Russ].

29. Kopeykin V. V. Rasprostranenie elektromagnitnykh impul'sov v podzemnoy srede [Propagation of electromagnetic pulses in the underground environment], available at: http://www. (accessed 16.01.2022). [In Russ].

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.