Analysis of tunnel lining behavior under seismic load depending on size of contact area between lining segments

The influence of the contact area size on the disengagement of tubing segments under seismic loading is analyzed. The analysis included 3D finite element-based model of tunnel lining in Abaqus CAE. The lining load was modeled as seismic forces effective in rock mass. The seismic load was replaced by an equivalent earthquake effect typical of the southern regions in Russia. Different versions of sizes of contact areas between the lining segments were compared. The comparison was carried out for the contact area sizes from 20 to 90% of the size of the segment side face. This interval enables considering the whole realistic range of contact area sizes and avoiding non-realistic variants. The computer modeling produced the data on the displacements of the segment rings relative to one another as well as on the stresses at the edges of the contact areas, and revealed the values of ovalization of segment rings and disengagement of the segments. The obtained data analysis allows concluding on the optimized shape and size of contact areas, and on the influence of the contact area size on the stability of segmental tunnel lining. Possible applicability of the proposed shapes of lining segments in construction of circular tunnels is discussed.

Keywords: stress–strain behavior of rock mass, seismic stability, O-ring lining, 3D formulation, ovalization, seismic effect, tunnel, stress field.
For citation:

Tkhorikov A. I., Popov M. G., Gladyshev S. A. Analysis of tunnel lining behavior under seismic load depending on size of contact area between lining segments. MIAB. Mining Inf. Anal. Bull. 2025;(5):84-99. [In Russ]. DOI: 10.25018/0236_1493_2025_5_0_84.

Acknowledgements:
Issue number: 5
Year: 2025
Page number: 84-99
ISBN: 0236-1493
UDK: 622.3
DOI: 10.25018/0236_1493_2025_5_0_84
Article receipt date: 18.12.2024
Date of review receipt: 06.02.2025
Date of the editorial board′s decision on the article′s publishing: 10.04.2025
About authors:

A.I. Tkhorikov1, Cand. Sci. (Eng.), Assistant Professor, e-mail: Tkhorikov_AI@pers.spmi.ru, ORCID ID: 0000-0002-0404-5690,
M.G. Popov1, Cand. Sci. (Eng.), Assistant Professor, e-mail: popov_mg@pers.spmi.ru, ORCID ID: 0000-0002-4603-5757,
S.A. Gladyshev1, Student, e-mail: 190807@stud.spmi.ru,
1 Empress Catherine II Saint-Petersburg Mining University, 199106, Saint-Petersburg, Russia.

 

For contacts:

A.I. Tkhorikov, e-mail: Tkhorikov_AI@pers.spmi.ru.

Bibliography:

1. Dorman I. Ya. Seysmostoykost' transportnykh tonneley [Seismic resistance of transport tunnels], Moscow, TIMR, 2000, 307p.

2. Amusin B. Z., Bulychev N. S., Olovyanniy A. G. Raschet krepi kapital'nykh gornykh vyrabotok [Calculation of the lining of capital mine workings], Moscow, Nedra, 1974, 320 p.

3. Lindsay M. L., Mark W., Wesseloo H. Wesseloo J. Complexities of underground mining seismic sources. Philosophical Transactions A. 2021, vol. 379(2196), pp. 1—24. DOI: 10.1098/rsta.2020.0134.

4. Jing-qi H., Xiu-li D., Mi Zhao, Xu Zhao Impact of incident angles of earthquake shear (S) waves on 3-D non-linear seismic responses of long lined tunnels. Engineering Geology. 2017, vol. 222, pp. 168—185. DOI: 10.1016/j.enggeo.2017.03.017.

5. Sokolov O. L. Spatial calculation of the lining of shallow tunnels. Bulletin of the Volgograd State University of Architecture and Civil Engineering. The Construction and Architecture series. 2009, no. 14(33), pp. 59—65. [In Russ].

6. Karasev M. A., Petrushin V. V. Methodological issues in determination of initial parameters for modeling deformation of rock salt as a polycrystalline discrete medium. MIAB. Mining Inf. Anal. Bull. 2024, no. 9, pp. 47—64. [In Russ]. DOI: 10.25018/0236_1493_2024_9_0_47.

7. Litvinsky G. G., Smekalin E. S., Kladko V. I. Evaluation methodology and criteria for the stability of mine workings. Sbornik nauchnykh trudov GOU VPO LNR «DonGTU». 2020, no. 19, pp. 5—14. [In Russ].

8. Stradanchenko S. G., Pleshko M. S., Armejskov V. N. Development of effective compositions of fiber-reinforced concrete for underground construction. Engineering journal of Don. 2013, no. 4(27), pp. 61. [In Russ].

9. Rusanov V. E. The effectiveness of the use of fiber-sprayed concrete in bridge and tunnel construction. The Russian Automobile and Highway Industry Journal. 2012, no. 5(27), pp. 65—68. [In Russ].

10. Usarov M. K., Mamatisaev G. I. Calculation on seismic resistance of box-shaped structures of large-panel buildings. IOP Conference Series: Materials Science and Engineering. 2020, vol. 971, no. 3, article 032041. DOI: 10.1088/1757-899X/971/3/032041.

11. Verbilo P. E., Iovlev G. A., Petrov N. E., Pavlenko G. D. Application of information modeling technologies for surveying support of mining operations. MIAB. Mining Inf. Anal. Bull. 2022, no. 6-2, pp. 60—79. [In Russ]. DOI: 10.25018/0236_1493_2022_62_0_60.

12. Belikov A. A., Beliakov N. A. Method of numerical modeling of rheological processes on the contour of single mine working. MIAB. Mining Inf. Anal. Bull. 2024, no. 1, pp. 94—108. [In Russ]. DOI: 10.25018/0236_1493_2024_1_0_94.

13. Konyukhov D. S., Kazachenko S. A. The main factors influencing the convergence of calculated and actual values of deformations of existing buildings. Russian Mining Industry Journal. 2022, no. 2, pp. 103—111. [In Russ]. DOI: 10.30686/1609-9192-2022-2-103-111.

14. Koval S. B., Molodtsov M. V. Early loading of concrete in conditions of different humidity. Bulletin of the South Ural state university. Series: Construction engineering and architecture. 2011, no. 12, pp. 15—17. [In Russ].

15. Kholiyorova H. K. Issues of optimal design of underground structures. Universum: tekhnicheskie nauki. 2022, no. 10-1(103), pp. 14—16. [In Russ].

16. Onishchenko A. O., Al-Mashwali S. M., Tomareva I. A. Analysis of technologies for the construction of underground oil and gas pipelines in seismically hazardous areas. Engineering journal of Don. 2021, no. 6(78), pp. 355—363. [In Russ].

17. Karasev M. A., Tien Tai Nguyen. Method for predicting the stress state of the lining of underground structures of quasi-rectangular and arched shapes. Journal of Mining Institute. 2022, vol. 257, pp. 807—821. [In Russ]. DOI: 10.31897/PMI.2022.17.

18. Nabatov V. V., Voznesensky A. S. Geomechanical analysis of the impact of the construction of new tunnels in the vicinity of existing underground subway structures on the state of the soil massif. Journal of Mining Institute. 2023, vol. 264, pp. 926—936. [In Russ].

19. Mkrtychev O., Sidorov D., Bulushev S. Comparative analysis of results from experimental and numerical studies on concrete strength. MATEC Web of Conferences. 2017, vol. 117, pp. 1—6. DOI: 10.1051/matecconf/201711700123.

20. Kholiyorova H. K., Yakubov S. H., Latipov Z. E. Mathematical models of optimization of cylindrical shells with reinforced stiffeners. Universum: tekhnicheskie nauki. 2021, no. 2(83), pp. 31—33. [In Russ].

21. Meda A., Rinaldi Z., Spagnuolo S., Rivaz B. Hybrid precast tunnel segments in fiber reinforced concrete with glass fiber reinforced bars. Tunnelling and Underground Space Technology. 2019, vol. 86, pp. 100—112. DOI: 10.1016/j.tust.2019.01.016.

22. Demenkov P. A., Goldobina L. A., Trushko O. V. Geotechnical barrier options with changed geometric parameters. International Journal of GEOMATE. 2020, vol. 19, no. 75, pp. 58—65. DOI: 10.21660/2020.75.78558.

23. Gospodarikov A. P., Trofimov A. V., Kirkin A. P. Evaluation of the deformation characteristics of brittle rocks beyond the limit of strength in the mode of uniaxial servohydraulic loading. Journal of Mining Institute. 2022, vol. 256, pp. 539—548. [In Russ]. DOI: 10.31897/PMI.2022.87.

24. Chi T. N., Alexandr G. Hyperstatic reaction method for calculations of tunnels with horseshoeshaped cross-section under the impact of earthquakes. Earthquake Engineering and Engineering Vibration. 2020, vol. 19, no. 1, pp. 179—188. DOI: 10.1007/s11803-020-0555-0.

25. Deev P. V., Petrukhin M. A. Calculation of lining of shallow tunnels for seismic effects of earthquakes. Sotsial'no-ekonomicheskie i ekologicheskie problemy gornoy promyshlennosti, stroitel'stva i energetiki: materialy konferentsii, T. 1 [Socio-economic and environmental problems of mining, construction and energy: Conference proceedings, vol. 1], Tula, TulGU, 2018, pp. 206—214. [In Russ].

26. Nguyen C. T., Do N. A., Pham V. V., Nguyen P. T., Alexandr G. Prediction of blast-induced the area of the tunnel face in underground excavations using fuzzy set theory ANFIS and artificial neural network ANN. International Journal of GEOMATE. 2022, vol. 23, no. 95, pp. 136—143. DOI: 10.21660/2022.95.3327.

27. Stradanchenko S. G., Molev M. D., Dmitrienko V. A. Modeling displacements of the soil contour of underground structures. Engineering journal of Don. 2023, no. 6(102), pp. 611—620. [In Russ].

28. Tsygankov D. A. Calculation of the temporary support of a tunnel traversed in a seismically active zone. Advances in current natural sciences. 2020, no. 5, pp. 108—114. [In Russ]. DOI: 10.17513/ use.37400.

29. Wang J., Huo Q., Song Z., Zhang Y. Study on adaptability of primary support arch cover method for large-span embedded tunnels in the upper-soft lower-hard stratum. Advances in Mechanical Engineering. 2019, vol. 11, no. 1, pp. 1—15. DOI: 10.1177/1687814018825375.

30. Zhaldinov M. M., Duishoev S. D., Turabyev C. K., Erkali U. Calculation of the method of engineering interaction with the calculation of seismic forces. Izvestiya vysshih uchebnyh zavedeniy Kyrgyzstana. 2022, no. 1, pp. 22—25. [In Russ]. DOI: 10.26104/IVK.2022.45.557.

31. Muravyova E. A., Manko A. V. Endogenous geodynamic processes: causes and impacts on underground structures. Construction Economy. 2023, no. 3, pp. 88—93. [In Russ].

32. Butunov Zh. R., Khamidov S. The process of propagation of a seismic wave acting on an underground structure. Economy and society. 2022, no. 6-1 (97), pp. 463—470. [In Russ].

33. Tutov S. S. Construction of tunnels. Dostizheniya nauki i obrazovaniya. 2021, no. 3 (75), pp. 30—31. [In Russ].

34. Sammal A. S., Pavlova N. S., Tormysheva O. A. Calculation of the lining of a tunnel constructed near the interface of two types of rocks. News of the Tula state university. Sciences of Earth. 2021, no. 2, pp. 344—360. [In Russ].

35. Popov M. G., Sinegubov V.Yu. Study of the properties of two-layer concrete-fiber-concrete structures at different ratio of layer thickness. Sustainable Development of Mountain Territories. 2024, vol. 16, no. 1, pp. 70—82. [In Russ]. DOI: 10.21177/1998-4502-2024-16-1-70-82.

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.