Causes of methane inflammation in frictional rock–cutting tool contact

In most cases, the cause of explosions of hazardous methane–air–dust concentrations in coal mines is the frictional contact of rocks and rock cutting tools. Many researchers analyze the explosion hazard in operation of cutting tools in mines but have unachieved a common perception of the methane inflammation mechanism in rock cutting so far. Many researchers think the main cause of methane inflammation is the hot rock–cutting tool contact spot composed of fused rock particles and worn cutter tipping material. Methane inflammability depends on operating conditions, geometry of cutting tools and on the properties of materials they are made of. The higher cutting speed and the thicker reinforcement layer enhance probability of methane inflammation while the increased tool back clearance reduces explosion hazard of cutting tools. There is yet no uniform knowledge of the effect exerted by the cutter shape and type on the cutting explosion hazard: some scientists believe rotary picks with conical cutters reduce the likelihood of methane inflammation as compared with the radial prismatic cutting tools, others think the explosion hazard of the radial cutters is comparable with the explosion safety of the conical cutters. The highest controversy lies in the influence of the cutter material and reinforcement on cutting explosion hazard in the dust–methane–air environment, although some researchers trust the diamond-coated carbide and tungsten carbide–cobalt reinforcement can substantially reduce methane inflammability.

Keywords: methane, cutter, rock, explosion, inflammation, contact spot, operating conditions and geometry, material.
For citation:

Linnik Yu. N., Linnik V. Yu., Zhabin A. B., Poljakov A. V. Causes of methane inflammation in frictional rock–cutting tool contact. MIAB. Mining Inf. Anal. Bull. 2023;(4):67–76. [In Russ]. DOI: 10.25018/0236_1493_2023_4_0_67.


Issue number: 4
Year: 2023
Page number: 67-76
ISBN: 0236-1493
UDK: 622-1/-9, 622.02
DOI: 10.25018/0236_1493_2023_4_0_67
Article receipt date: 23.12.2022
Date of review receipt: 03.03.2023
Date of the editorial board′s decision on the article′s publishing: 10.03.2023
About authors:

Yu.N. Linnik1, Dr. Sci. (Eng.), Professor, e-mail:,
V.Yu. Linnik1, Dr. Sci. (Econ.), Assistant Professor, Professor, e-mail:,
A.B. Zhabin, Dr. Sci. (Eng.), Professor, Full Member of Academy of Mining Sciences, Professor, Tula State University, 300012, Tula, Russia, e-mail:,
A.V. Poljakov, Dr. Sci. (Eng.), Assistant Professor, Expert, Tula Branch of Academy of Mining Sciences, 300028, Tula, Russia, e-mail:,
1 State University of Management, 109542, Moscow, Russia.


For contacts:

V.Yu. Linnik, e-mail:


1. Kabanov E. I., Korshunov G. I., Kornev A. V., Myakov V. V. Analysis of the causes of methane explosions, flashes and ignitions at coal mines of Russia in 2005–2019. MIAB. Mining Inf. Anal. Bull. 2021, no. 2-1, pp. 18—29. [In Russ]. DOI: 10.25018/0236-1493-2021-21-0-18-29.

2. Lipin Yu. I. Friktsionnoe vosplamenenie pylemetanovozdushnykh smesey i ego preduprezhdenie v ugol'nykh shakhtakh [Friction ignition of dust-methane-air mixtures and its prevention in coal mines], Doctor’s thesis, Kemerovo, 2001, 50 p.

3. Schelter G. Significance of protection against underground explosions in terms of mining supervision. Gluckauf. 1989, no. 21/22, pp. 5—9. [In Russ].

4. Peary J. T. Against frictional jguitions associated with coal gutting and funneling. Mining Engineer. 2018, vol. 283, pp. 517—522.

5. Kortney W., Salman R., Mandell L., Abcede R. Frictional ignition Problems in US Coal mines. ХIХ International Conference of Research Institutes of Safety in Mines. 2019, papers 11, F 7, pp. 488—494.

6. US Bureau of mines research update. Remote methane detection fire suppression system improved bit design wetland ecosystems for acid mene drainage coal bump stadies. Mining Engineer. 1987, vol. 39, no. 8, pp. 788—790.

7. Sholl E. V. Occurrence of methane and coal dust explosions and their prevention. Gluckauf. 1989, no. 21/22, pp. 9—11. [In Russ].

8. Hartman F. Frictional ignition of gasses by mining machines. Mining Congress Journal. 1955, pp. 34—36.

9. Tomas W. G., Datey U. W. The incendivity of frictional sparks. Colliery Engineering. 1963, vol. 40, no. 477, pр. 65—70.

10. Trueman R. A literature review of the ignition of methane — air mixtures by coal — gutting picks. Journal of the South African Institute of Mining and Metallurgy. 1985, vol. 85, pp. 209—215.

11. Botvenko D. V. Metodologicheskie osnovy prognoza i lokalizatsii vzryvnogo goreniya rudnichnykh gazov pri razrushenii gornykh porod na ugol'nykh shakhtakh [Methodological foundations for the prediction and lo-calization of explosive combustion of mine gases during the destruction of rocks in coal mines], Doctor’s thesis, Kemerovo, 2020, 47 p.

12. Botvenko D. V., Popov V. B., Ermolaev A. M., Kazantsev V. G. In-vestigation of the possibility and causes of sparking during deformation and destruction of rocks. Occupational Safety in Industry. 2016, no. 10, pp. 62—64. [In Russ].

13. Leman H. Irrigation of furrows for cutting incisor crowns of combine harvesters of selective action. Gluckauf. 1987, no. 12, pp. 3—13. [In Russ].

14. Blickenderfer R., Kelley J., Deardorf D., Copeland M. Festing of coal-cutter materials for incendivity and radiance of sparks. US Bureau of Mines. Report of Investigations 7713. 2002, 23 p.

15. Larson D. A., Dellorano V. W., Windguist C. F., Roepke W. W. Preliminary evaluation of bit impakt ignitions of methane using a drums-type cutting head. US Bureau of Mines. Report RI 8753. 1983, pр. 48—54.

16. Welly G. Prevention of Frictional Ignition With Water. Sprays. Proceedings of the 3rd US Mine Ventilation Symposium. The Pennsylvania State University. 1987, pp. 126—131.

17. Mestravick E. G., Barret A. L. Point attack picks on shearer drums-cutting and environment aspects. Colliery Guardian. 1989, vol. 237, no. 1, pp. 7—12.

18. Roepke W. W. General methods of primary dust control during cutting. Mining Engineer. 1984, vol. 36, no. 6, pp. 636—644.

19. Lacheri M. Lutte contre les risgues d’ inflammation frictionnelle du grison par les pics de haveuse. Publications Technigues des Charbonnages de France. 1986, vol. 4, pp. 45—59.

20. Hurt K. G., Mestravick E. G. High performance shearer drum design. Colliery Guardian. 1988, vol. 236, no. 12, pp. 428—429.

21. Collin W. D., Kornecki Y. A. The development and use of diamond picks for longwall shearer of secunda collieries. Mining Productivity Through Reliability and Control. 1985, vol. 1, pp. 153—163.

22. Balovtsev S. V., Skopintseva O. V., Kolikov K. S. Aerological risk management in designing, operation, closure and temporary shutdown of coal mines. MIAB. Mining Inf. Anal. Bull. 2020, no. 6, pp. 85—94. [In Russ]. DOI: 10.25018/0236-1493-2020-6-0-85-94.

23. Smirnyakov V. V., Smirnyakova V. V. Unhandy factors in statistics of accidental gas and dust explosions in coal mines in Russia. Gornyi Zhurnal. 2016, no. 1, pp. 30—34. [In Russ]. DOI: 10.17580/gzh.2016.01.07.

24. Tripathy D. P., Ala C. K. Risk assessment in underground coalmines using fuzzy logic in the presence of uncertainty. Journal of the Institution of Engineers (India): Series D. 2018, vol. 99, no. 2, pp. 157—163. DOI: 10.1007/s40033-018-0154-7.

25. Botvenko D. V., Goloskokov S. I., Koptev M. Yu., Tatarnikov E. P. Automatic equipment for blast isolation on application of room and pillar mining under JSC «CC «Mezhegejugol». Bulletin of Scientific Centre VostNII for Industrial and Environmental Safety. 2017, no. 1, pp. 19—30. [In Russ].

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.