Thawing of rocks in shaft sinking with artificial ground freezing

The article describes the experimental data on frozen walls of mine shafts under construction in two underground mines operating in Starobin and Upper Kama potassium salt deposits. On the evidence of the experimental data, the temperature dynamics in rock mass is analyzed in different periods of evolution of frozen walls around the shafts. For the temperature balance assessment in rock mass, the amount of heat output and input in rocks in certain freeze and thaw periods is calculated. In view of the experience gained in sinking of mine shafts with artificial ground freezing, the choice of the rock mass thawing method is mostly governed by the actual construction plan of a specific mine. Using the calibrated models of thermodynamics in rock mass areas subjected to freezing, a series of numerical calculations of heat distribution is performed with a view to enhancing safety and efficiency of vertical shaft sinking. The multivariate modeling results made it possible to identify the most efficient methods to thaw rocks with regard to their preliminary freezing conditions and with respect to the current plan of construction of mining and processing infrastructure. It is found that with the artificial ground freezing method, duration of the temperature stabilization period in frozen rocks to reach the state of natural geothermy (at a bias not more than by ± 2 °С) is longer than the entire construction period of mine shafts.

Keywords: frozen walls, rock mass, artificial ground freezing, rack thawing, temperature field, mine shaft, control system, experimental data.
For citation:

Parshakov O. S., Levin L. Yu., Semin M. A. Thawing of rocks in shaft sinking with artificial ground freezing. MIAB. Mining Inf. Anal. Bull. 2021;(8):51-69. [In Russ]. DOI: 10.25018/0236_1493_2021_8_0_51.

Acknowledgements:

The studies were supported by the Russian Science Foundation, Project No. 19-77-30008.

Issue number: 8
Year: 2021
Page number: 51-69
ISBN: 0236-1493
UDK: 622.253
DOI: 10.25018/0236_1493_2021_8_0_51
Article receipt date: 21.10.2020
Date of review receipt: 20.11.2020
Date of the editorial board′s decision on the article′s publishing: 10.07.2021
About authors:

O.S. Parshakov1, Junior Researcher, e-mail: olegparshakov@gmail.com,
L.Yu. Levin1, Dr. Sci. (Eng.), Head of Aerology and Thermophysics Department, e-mail: aerolog.lev@gmail.com,
M.A. Semin1, Cand. Sci. (Eng.), Researcher, e-mail: mishkasemin@gmail.com,
1 Mining Institute of Ural Branch, Russian Academy of Sciences, 614007, Perm, Russia.

 

For contacts:

O.S. Parshakov, e-mail: olegparshakov@gmail.com.

Bibliography:

1. Trupak N. G. Zamorazhivanie gornykh porod pri prokhodke stvolov [Freezing rocks during shaft sinking], Moscow, Ugletekhizdat, 1954, 896 p.

2. Trupak N. G. Zamorazhivanie gruntov v podzemnom stroitel'stve gornykh [Freezing of soils in underground mining], Moscow, Nedra, 1974, 281 p.

3. Dolgov O. A. Methodology for calculating the process of freezing rocks when driving mine shafts by freezing to a great depth. Zamorazhivanie gornykh porod pri prokhodke stvolov shakht [Freezing of rocks during sinking of mine shafts], Moscow, izd-vo AN SSSR, 1961, pp. 9—64.

4. Alzoubi M. A., Nie-Rouquette A., Sasmito A. P. Conjugate heat transfer in artificial ground freezing using enthalpy-porosity method: Experiments and model validation. International Journal of Heat and Mass Transfer. 2018, vol. 126, pp. 740—752.

5. Liu Z., Sun Y., Wang B., Li Q. Experimental study of artificial ground freezing by natural cold gas injection. Applied Sciences. 2020, vol. 10, no. 17, article 6055. DOI: 10.3390/ app10176055.

6. Zashchita gornykh vyrabotok ot podzemnykh i poverkhnostnykh vod SP 103.13330.2012, utv. prikazom Ministerstva regional'nogo razvitiya Rossiyskoy Federatsii (Minregion Rossii) 30.06.2012 g. [Construction Regulations SP 103.13330.2012 Protection of Underground Openings from Ground and Surface Water. Approved by the Ministry of Regional Development of the Russian Federation, Order as of Jun 30, 2012], 68 p. [In Russ].

7. Zemlyanye sooruzheniya, osnovaniya i fundamenty SP 45.13330.2012, utv. prikazom Ministerstva regional'nogo razvitiya Rossiyskoy Federatsii (Minregion Rossii) 29.12.2011 g. [Construction Regulations SP 45.13330.2012 Earth Structures, Basements and Foundations], 140 p. [In Russ].

8. Sopko J. Ground control. Tunnels and tunneling. Technical/Geotechnical Engineering. 2017, October-November, pp. 34—37.

9. Ol'khovikov Yu. P. Krep' kapital'nykh vyrabotok kaliynykh i solyanykh rudnikov [Support for capital workings of potash and salt mines], Moscow, Nedra, 1984, 238 p.

10. Pugin A. V. Investigation of the dynamics of thermal fields during defrosting of ice walls of shafts under construction. Strategiya i protsessy osvoeniya georesursov. 2018, vol. 16, pp. 272—275. [In Russ]. DOI: 10.7242/GDSP.2018.16.73.

11. Tao H., Weihao Y., Zhijiang Y., Chi Z., Dongliang B. Monitoring study of shaft lining concrete strain in freezing water-bearing soft rock during mine shaft construction period in West China. Procedia Engineering. 2011, vol. 26, pp. 992—1000. DOI: 10.1016/j.proeng.2011.11.2266.

12. Astaf'eva T., Igolka D. Mechanized shaft sinking: fast, economical, safe. Globus. Geologiya i biznes. 2020, no. 4(63), pp. 128—135. [In Russ].

13. Parshakov O. S. Razrabotka avtomatizirovannoy sistemy termometricheskogo kontrolya ledoporodnykh ograzhdeniy [Development of an automated system for thermometric control of frozen wall], Candidate’s thesis, Perm, 2019, 140 p.

14. Levin L. Y., Bogomyagkov A. V., Parshakov O. S., Semin M. A. The application of «FrozenWall» software in simulation of artificial ground freezing. Izvestiya Tul’skogo gosudarstvennogo universiteta, Nauki o zemle. 2019, no. 4, pp. 269—281. [In Russ].

15. Shishkin V. V., Grachev I. V., Shelemba I. S. Domestic experience in the production and application of fiber optic sensors. Prikladnaya fotonika. 2016, vol. 3, no. 1, pp. 61—75. [In Russ].

16. Hoffmann L., Müller M. S., Krämer S., Giebel M., Schwotzer G., Wieduwilt T. Applications of fibre optic temperature measurement. Estonian Journal of Engineering. 2007, vol. 13, no. 4, pp. 363—378.

17. Levin L. Yu., Semin M. A., Parshakov O. S. Improving methods of frozen wall state prediction for mine shafts under construction using distributed temperature measurements in test wells. Journal of Mining Institute. 2019, vol. 237, pp. 268—274. [In Russ].

18. Iudin M. M. Ensuring the safety of the stability of the shaft during thawing of the frozen wall. Vestnik Yakutskogo gosudarstvennogo universiteta. 2009, vol. 6, no. 1, pp. 46—50. [In Russ].

19. Tarasov V. V., Koshev G. Ya., Zagvozdkin I. V., Chaginov A. V., Nikolaev P. V. On the solution of safety problems during the construction of vertical shafts at potash deposits during the thawing period of the frozen wall. Occupational Safety in Industry. 2016, no. 9, pp. 55—59. [In Russ].

20. Alzoubi M. A., Zueter A., Nie-Rouquette A., Sasmito A. P. Freezing on demand. A new concept for mine safety and energy savings in wet underground mines. International Journal of Mining Science and Technology. 2019, vol. 29, no. 4, pp. 621—627.

21. Shcherban' A. N., Kremnev O. A. Nauchnye osnovy rascheta i regulirovaniya teplovogo rezhima glubokih shaht [Scientific basis for calculating and regulating the thermal regime of deep mines], vol. 1. Kiev, izd-vo AN USSR, 1959, 430 p.

22. Hu R., Liu Q., Xing Y. Case study of heat transfer during artificial ground freezing with groundwater flow. Water (Switzerland). 2018, vol. 10, no. 10. DOI: 10.3390/w10101322.

23. Vitel M., Rouabhi A., Tijani M., Guérin F. Thermo-hydraulic modeling of artificial ground freezing: Application to an underground mine in fractured sandstone. Computers and Geotechnics. 2016, vol. 75, pp. 80–92. DOI: 10.1016/j.compgeo.2016.01.024.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.