Deformation risk analysis and geomechanical monitoring for the natural–technical system of a spoil dump and its foundation

The operating experience of spoil dumps, their surveying and the analysis of dump deformation causes shows that instability of dumps is mostly connected with the factors of hydrogeology. The timely detection of destructive processes is possible using a monitoring survey algorithm and the found qualitative and quantitative criteria of safety. From the experimental observations over an external spoil dump arranged on an inclined and bedded foundation complicated with water flow channels, all possible causes of the dump deformations are described. The quantitative (failure probability) and qualitative (after-effect severity) estimates of deformation risk are obtained. Using the frequency–after-effect severity risk matrix, the maximal deformation risk level is found. Based on the risk estimates, the optimized design of an observation station is proposed, which ensures control over the most vulnerable sites of a test object at the minimum number of check points. The best acceptable methods and tools for positioning check points in terms of their accuracy and material inputs are proposed for the test conditions. The displacement determination errors are estimated for the check points of the observation station. The observation procedure is developed, and two levels of criterial values are introduced for the diagnostic indicators of the natural–technical system of a dump and its foundation.

Keywords: natural–technical foundation–dump system, dump deformation causes, risk analysis, failure probability, geomechanical monitoring, observation station design, expected displacement error, safety criterion.
For citation:

Ananenko E. V., Bakhaeva S. P. Deformation risk analysis and geomechanical monitoring for the natural–technical system of a spoil dump and its foundation. MIAB. Mining Inf. Anal. Bull. 2023;(9):5-21. [In Russ]. DOI: 10.25018/0236_1493_2023_9_0_5.

Issue number: 9
Year: 2023
Page number: 5-21
ISBN: 0236-1493
UDK: 622.12
DOI: 10.25018/0236_1493_2023_9_0_5
Article receipt date: 30.01.2023
Date of review receipt: 15.06.2023
Date of the editorial board′s decision on the article′s publishing: 10.08.2023
About authors:

E.V. Ananenko1, Senior Researcher, e-mail:,
S.P. Bakhaeva1, Dr. Sci. (Eng.), Professor, e-mail:,
1 T.F. Gorbachev Kuzbass State Technical University, 650000, Kemerovo, Russia.


For contacts:

E.V. Ananenko, e-mail:


1. Ananenko E. V., Bakhaeva S. P. The reason analysis of the overburden rock dumps deformation. Problemy gornogo dela. Sbornik nauchnykh trudov II Mezhdunarodnogo Foruma studentov, aspirantov i molodykh uchenykh-gornyakov, posvyashchennogo 100-letiyu DonNTU [Mining problems. Collection of research papers of the II International Forum of students, postgraduates and young mining scientists dedicated to the 100th anniversary of DonNTU], Donetsk, DonNTU, 2021, pp. 328—332. [In Russ].

2. Ananenko E., Bakhaeva S. P. The reason analysis of the overburden rock dumps deformation. E3S Web of Conferences. 2021, vol. 315, article 01001. DOI: 10.1051/e3sconf/2021 31501001.

3. Noskov V. A., Badtiev B. P., Pavlovich A. A. Risk management in open pit mining operations. Gornyi Zhurnal. 2020, no. 2, pp. 51—55. [In Russ]. DOI: 10.17580/gzh.2020.02.06.

4. Shabarov A. N., Noskov V. A., Pavlovich A. A., Cherepov A. A. The concept of geomechanical risk in open pit mining operations. Gornyi Zhurnal. 2022, no. 9, pp. 22—28. [In Russ]. DOI: 10.17580/gzh.2022.09.04.

5. Fedosov A. V., Mannanova G. R., Shipilova Yu. A. Hazard analysis, accident risk assessment at hazardous production facilities and recommendations on the choice of the risk analysis methods. Petroleum engineering. 2016, no. 3, pp. 322—336. [In Russ].

6. Hadjigeorgiou J. Understanding, managing and communicating geomechanical mining risk. Proceedings of International Conference of mining geomechanical risk. ACG, Perth, Australia. 2019, pp. 3—20.

7. Tapia A., Contreras L. F., Jefferies M., Steffen O. Risk evaluation of slope failure at the chuquicamata mine. Proceedings of the 2007 International Symposium on Rock Slope Stability in Open Pit Mining and Civil Engineering. Australian Centre for Geomechanics, Perth. 2007, pp. 477—495.

8. Pine R. J., Roberds W. J. A risk-based approach for the design of rock slopes subject to multiple failure modes — illustrated by a case study in Hong Kong. International Journal of Rock Mechanics and Mining Sciences. 2005, vol. 42, no. 2, pp. 261—275. DOI: 10.1016/j.ijrmms.2004.09.014.

9. Mishra R. K., Rinne M. Guidelines to design the scope of a geotechnical risk assessment for underground mines. Journal of Mining Science. 2014, vol. 50, no. 4, рр. 745—756. DOI: 10.1134/S1062739114040152.

10. Prokina D. N., Fedosov A. V., Shtur V. B. Application of the information systems for risk assessment of the hazardous production facilities. Electrical and data processing facilities and systems. 2014, vol. 10, no. 2, pp. 73—79. [In Russ].

11. Lushnikov V. N., Selivanov D. A., Berezhnoy V. P. Forecast reliability of the geo-technical risks at open pit mining operations. Gornyi Zhurnal. 2023, no. 1, pp. 4—13. [In Russ]. DOI: 10.17580/gzh.2023.01.01.

12. Eiter B. M., Bellanca J. L. Identify the influence of risk attitude, work experience, and safety training on hazard recognition in mining. Mining Metallurgy & Exploration. 2020, vol. 37, no. 7, pp. 1931—1939. DOI: 10.1007/s42461-020-00293-8.

13. Read J., Stacey P. Open pit slope design, Csiro publishing. 2009, p. 496.

14. Melikhov M. V. Features of geoinformation space monitoring of mining natural-technical systems. MIAB. Mining Inf. Anal. Bull. 2022, no. 12-1, pp. 29—41. [In Russ]. DOI: 10.250 18/0236_1493_2022_121_0_29.

15. Bakhaeva S., Chernykh E. Study of the conditions for construction of the haulage berm in the deposit ledger-wall. E3S Web of Conferences. 2019, vol. 105, article 01034. DOI: 10.1051/ e3sconf/ 201910501034.

16. Zhelankin V. G. Determination of the probabilistic level of risk for the ash and slag dump accident as per the condition of slope stability and approach to the setting of the safety criteria. International Research Journal. 2021, no. 12-1(114), pp. 50—56. [In Russ]. DOI: 10.23670/ IRJ.2021.114.12.006.

17. Zerkal O. V., Fomenko I. K. Assessment of the geological risk using probabilistic analysis for quantitative evaluation of slope stability. Analiz, prognoz i upravlenie prirodnymi riskami s uchetom global'nogo izmeneniya klimata «Georisk-2018». Materialy X Mezhdunarodnoy nauchno-prakticheskoy konferentsii po problemam snizheniya prirodnykh opasnostey i riskov [Analysis, forecast and management of the natural risks considering global climate change «Georisk-2018»], vol. 1, Moscow, RUDN, 2018, pp. 303—308. [In Russ].

18. Matsiy S. I., Bezuglova E. V., Pleshakov D. V. Otsenka opolznevogo riska transportnykh sooruzheniy. Monografiya [Assessment of landslide risk of the transport facilities, monograph], Krasnodar, KubGAU, 2015, 120 p.

19. Spirin V. I., Levinskiy I. S., Hormazabal E. Optimization of open pit side structures based on the risk assessment. News of the Tula state university. Sciences of Earth. 2019, no. 3, pp. 317—331. [In Russ].

20. Contreras L.-F., Hormazabal E., Ledezma R., Arellano M. Geotechnical risk analysis for the closure alternatives of the Chuquicamata open pit. First International Conference on Mining Geomechanical Risk. Perth, Australian. 2019, pp. 373—388. DOI: 10.36487/ACG_rep/1905_ 22_Hormazabal.

21. Gushcha D. I., Kovrizhnykh E. V., Yeretnov N. V., Abdullaeva A. A., Redkin D. V. Qualitative assessment of the geo-mechanical risks based on the results of the long–term monitoring and a 3D field model built with the use of a multicopter. Moscow economic journal. 2022, vol. 7, no. 2. [In Russ]. [In Russ]. DOI: 10.55186/2413046X_2022_7_2_73.

22. Bakhaeva S. P., Protasov S. I., Mikhailova T. V., Bakushkin R. P. Regarding design of the observation station at synclinal occurrence of rocks. MIAB. Mining Inf. Anal. Bull. 2002, no. 10, pp. 44—47. [In Russ].

23. Bakhaeva S. P., Mikhailova T. V. Substantiation of the surveying control accuracy of the condition of the earth dams — liquid waste accumulators from mining enterprises. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopaemykh. 2017, no. 2, pp. 177—189. [In Russ].

24. Gordeev V. A. Regarding accuracy of the horizontal displacements determining at geotechnical monitoring. Mine Surveying Bulletin. 2022, no. 1(146), pp. 13—19. [In Russ].

25. Kutepov Yu. I., Kutepova N. A., Vasileva А. D., Mukhina A. S. Engineering-geological and ecological concerns in operation and reclamation of high slope dumps at open-pit mines in Kuzbass. MIAB. Mining Inf. Anal. Bull. 2021, no. 8, pp. 164—178. [In Russ]. DOI: 10.25018/ 0236_1493_2021_8_0_164.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.