Seismic activity in rock mass during mining operations in Vorkutaugol’s Komsomolskaya Mine

Seismic monitoring provides information on the geomechanical behavior of coal and host rocks in the course of mining, including: location and dimensions of stress concentration zones to be subjected for the local monitoring later on; prediction of geodynamic events after reaching critical values of seismic parameters. The seismic activity data provided by the operating monitoring system in Vorkutaugol’s Komsomolskaya Mine are analyzed, namely: total number of seismic events per recording interval N; average and total values of seismic energy; integrated criterion F including the seismic event energy/background energy ratio; criterion B of rock mass capability to accumulate the elastic energy. The periods and ranges of variation in the seismic activity parameters are determined. The hypocenters of seismic events appear uniformly within the limits of extraction panels, which is reflective of continuous deformation and re-distribution of confining pressure in coal and in host rocks as longwall is advanced; the N and F plots show the periodic variations with an interval of 1–2 months, connected with the stages of main roof caving; the value of B is comparatively stable which implies the uniformity of physical and mechanical properties of coal and host rocks and the absence of the local stress concentration zones; the most informative parameters of the geomechanical behavior is the integrated criterion F which characterizes the disintegration intensity and energy in rock mass. During development drivage in the influence zone of a tectonic fault, the local jump in the seismic activity is recorded. The energy spectra and the ranges of the seismic parameters in nonhazardous rock mass are determined.

Keywords: seismic monitoring system, geodynamic phenomena, seismic event, prediction criteria, critical values of parameters, confining pressure re-distribution, main roof caving, local stress concentration, energy spectrum.
For citation:

Razumov E. E., Rukavishnikov G. D., Mulev S. N., Prostov S. M. Seismic activity in rock mass during mining operations in Vorkutaugol’s Komsomolskaya Mine. MIAB. Mining Inf. Anal. Bull. 2022;(1):104-114. [In Russ]. DOI: 10.25018/0236_1493_2022_1_0_104.

Issue number: 1
Year: 2022
Page number: 104-114
ISBN: 0236-1493
UDK: 550.343.6
DOI: 10.25018/0236_1493_2022_1_0_104
Article receipt date: 09.03.2021
Date of review receipt: 19.10.2021
Date of the editorial board′s decision on the article′s publishing: 10.12.2021
About authors:

E.E. Razumov1,2, Assistant, Researcher, e-mail:, ORCID iD0000-0002-3696-8553,
G.D. Rukavishnikov2, Head of Geodynamic Monitoring Center, e-mail:, ORCID iD 0000-0001-8228-2870,
S.N. Mulev2, Director of Science, e-mail:,
S.M. Prostov1, Dr. Sci. (Eng.), Professor, e-mail:, ORCID iD 0000-0003-0780-2690,
1 T. Gorbachev Kuzbass State Technical University, 650000, Kemerovo, Russia,
2 Research Institute of Mining Geomechanics & Mine Surveying (VNIMI), 199106, Saint-Petersburg, Russia.


For contacts:

E.E. Razumov, e-mail:


1. Marcak H., Mutke G. Seismic activation of tectonic stresses by mining. Journal of Seismology. 2013, vol. 17, no. 4, pp. 1139—1148.

2. Meifeng C. Prediction and prevention of rockburst in metal mines. A case study of Sanshandao gold mine. Journal of Rock Mechanics and Geotechnical Engineering. 2016, vol. 8, no. 2, pp. 204—211.

3. Manchao H., Fuqiang R., Dongqiao L. Rockburst mechanism research and its control. International Journal of Mining Science and Technology. 2018, vol. 28, no. 5, pp. 829—837.

4. Rasskazov I. Yu., Fedotova Yu. V., Sydlyar A. V., Potapchuk M. I. Analysis of induced seismic events in rockburst-hazardous Nikolaevsk deposit. MIAB. Mining Inf. Anal. Bull. 2020, no. 11, pp. 46–56. [In Russ]. DOI: 10.25018/0236-1493-2020-11-0-46-56.

5. Azhari A., Ozbay U. Evaluating the effect of earthquakes on open pit mine slopes. 50th U.S. Rock Mechanics. Geomechanics Symposium, 26–29 June, 2016, Houston, Texas. 2016. Pp. 315–324.

6. Williams-Stroud S. C. Earth stress and seismic hazard from the size-frequency distribution of seismic events. 51st U.S. Rock Mechanics. Geomechanics Symposium. 25–28 June, 2017. California, San-Francisco. 2017. Pp. 544—550.

7. Guseva N. V., Kiselev V. A., Shabarov A. N., Yutyaev E. P. Forecast of negative phenomena hazards in coal mines based on the method of geodynamic zvning and artificial neural networks. Mine Surveying Bulletin. 2016, no. 6, pp. 34—38. [In Russ].

8. Azarov A. V., Serdyukov A. S., Yablokov A. V. Methods of the focal mechanism determination of microseismic events based on modeling full wave fields in a horizontally stratified media. MIAB. Mining Inf. Anal. Bull. 2016, no. 10, pp. 131—143. [In Russ].

9. Korchak P. A., Zhukova S. A. Method of receiving basic data for the seismic monitoring at underground mines of JSC «Apatit». MIAB. Mining Inf. Anal. Bull. 2014, no. 10, pp. 15—20. [In Russ].

10. Zhuravleva O. G. seismic events clustering in the conditions of rockburst ore deposits of the Khibinsky rock mass region. Problemy nedropol'zovaniya. 2017, no. 1, pp. 14—20.

11. Razumov E. E., Rukavishnikov G. D., Mulev S. N., Prostov S. M. Basic principles of building a geomonitoring seismic system. Gornyi Zhurnal. 2021, no. 1, pp. 8—12. [In Russ].

12. GITS Seismic Monitoring System. Ugol'. 2019, no. 10, pp. 13. [In Russ].

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.