Analysis of transport and separation systems in radiometric separators: Ways to improve their efficiency

The paper analyzes the transport and separation systems in radiometric separators. The main difference between radiometric separators manufactured in Russia and abroad is their capacity governed, first of all, by the transport system type. Foreign separators use belts having speeds of 3 m/s at least to deliver lumpy material to the zone of primary radiation and data recording. Russian manufacturers mostly use vibrating feeders with a shaped tray in the separator transport system. Radiation treatment of ore lumps and back radiation recording is performed along a free-fall trajectory, at the lump speed in the radiation and recording zone not higher than 2 m/s. The separation efficiency of separators with a conveyor belt to transport ore to the radiation and recording zone fails to provide high-quality separation in a single operation due to the high load of the belt and owing to identification complexity of some lumps. The separation quality degradation in a radiometric separator is also possible due to separation systems used. The authors propose an additional device that integrates the transport system and the separation system into a single assembly. In Rocky DEM software environment, the authors have performed preliminary evaluation of the transport system design and determined working conditions of vibrating feeders and drum-type spreaders to ensure 100 % separation of lumps with standard content of useful component as per the recording system data.

Keywords: pre-concentration, radiometric separators, transport system, conveyor belt, vibrating feeders, separation system, separation efficiency, grain size composition, productivity.
For citation:

Shibaeva D. N., Tereshchenko S. V., Vlasov B. A., Shumilov P. A., Bulatov V. V. Analysis of transport and separation systems in radiometric separators: Ways to improve their efficiency. MIAB. Mining Inf. Anal. Bull. 2021;(5—2):338—349. [In Russ]. DOI: 10.25018/0236_1493_2021_52_0_338.

 

Acknowledgements:
Issue number: 5
Year: 2021
Page number: 338-349
ISBN: 0236-1493
UDK: 622.7
DOI: 10.25018/0236_1493_2021_52_0_338
Article receipt date: 27.01.2021
Date of review receipt: 22.03.2021
Date of the editorial board′s decision on the article′s publishing: 10.04.2021
About authors:

Shibaeva D. N.1, Cand. Sci. (Eng.), senior researcher, shibaeva_goi@mail.ru;
Tereshchenko S. V.1,2, Dr. Sci. (Eng.), chief researcher, head of laboratory, head of the department of Mining, Geosciences and nature management;
Vlasov B. A.1, junior researcher;
Shumilov P. A.1, leading engineer;
Bulatov V. V.1, engineer;
1 Mining Institute Subdivision of the Federal Research Centre Kola Science Centre of the Russian Academy of Sciences, Apatity, Russia;
2 Murmansk Arctic State University, Russia.

 

For contacts:
Bibliography:

1. Shemyakin V., Skopov S., Klimentenok G., Panov A. Theory and practice of bauxite X-ray sorting. Light Metals. 2015. pp. 5—10

2. Knapp H., Robben M., Dehler M., Wotruba H. X-ray transmission sorting of tungsten ore. Conference: Optical Characterization of Materials At: Karlsruhe, Germany March 2013

3. Alblooshi A., Shammout M., Ouda O., Umar Imtiaz Ahmed, WasiUl Hassan Conceptual MSW Landfill Design and Waste-To-Energy Recovery Potential for Greater Dammam Area. PMU. 2016. 99 p.

4. Korotkevich V. A., Kukharenko I. E., Dudley Frank Thomas Unique technologies for monitoring the quality and concentration of mineral raw materials. Zoloto i technologii. 2014. no. 4(26). [In Russ]

5. Korotkevich V. A., Kukharenko I. E., Belyak A. A., Korotkevich E. V. Innovative technologies and equipment in the preliminary concentration of mineral raw materials. Dobyvayushchaya promyshlennost’. 2017. no. 2. pp. 168—172. [In Russ]

6. A. V. Kurkov Anufrieva S. I. Sokolova V. N. Kydzhy M. V. Cheprasov I. V. Troitsky A. V. Grishaev G. S. Kaplin A. I. Information and analytical materials: World achievements in the development of methods, techniques and technologies for processing mineral raw materials. Series: Mineral processing. Moscow: VIMS, 2020. 52 p. [In Russ]

7. Robben C., Wotruba H. Sensor. Based Ore Sorting Technology in Mining—Past, Present and Future. Minerals, 2019. Vol. 9. pp. 1—25.

8. Lessarda J., Sweetsera W., Bartramb K., Figueroaa J., Hugha L. Bridging the gap: Understanding the economic impact of ore sorting on a mineral processing circuit. Minerals Engineering. 2016. Vol. 91, pp. 92—99.

9. Nadolski S., Samuels M., Klein B., Hart C. Evaluation of bulk and particle sensorbased sorting systems for the New Afton block caving operation. Minerals Engineering. 2018. Vol. 121. pp. 169—179.

10. Kantsel V. A., Kantsel M. A., Mazurkevich P. A., Bogushevsky E. M. RU 2204517, 20.05.2003. [In Russ]

11. Kantsel A. V., Mazurkevich P. A., Danilov A. V., Kantsel M. A., Zuppinger A. A., Kantsel V. A. RU 2432206, 27.10.2011 [In Russ]

12. Shibaeva D. N., Vlasov B. A., Shumilov P. A., Tereshchenko S. V., Asanovich D. A. The choice of the optimal construction for a transporting device of the radiometric separator by applying CAE-systemms. MIAB. Mining Inf. Anal. Bull. 2019. S37. pp. 625— 634. [In Russ]

13. Tereshchenko S. V., Shibaeva D. N. Ore quality improvement by pre-concentration: Theory and practice. Mining journal. 2020. no. 9. pp. 60—65. [In Russ]

14. Tereshchenko S. V., Shibaeva D. N., Alekseeva S. A. Pysical-technical basis of X-rayluminescence separation of the Khibiny poor apatit-containing ores. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopaeymykh. 2019. no.1. pp. 137—147. [In Russ]

15. Samoylik V. G. Spetsial’nyye i kombinirovannyye metody obogashcheniya poleznykh iskopayemykh [Special and combined methods of mineral processing]: uchebnoye posobiye. Donetsk: DonNTU, 2015. 165 p. [In Russ]

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.