Analysis of forces in the hydraulic walking mechanism

The excavator-dragline is an integral unit for conducting stripping and excavation work in coal mines and quarries for the extraction of construction minerals. The use of such machines in quarries allows for the application of non-transport technology for the extraction of valuable minerals, which significantly reduces the cost of the product. Powerful excavatordraglines, due to their large mass, are equipped with a special walking mechanism, which ensures low specific pressure on the ground both during stationary work and during movement. The most powerful models of draglines are equipped with a hydraulic drive walking mechanism. The present study focuses on analyzing the kinematics of motion and forces occurring in the walking mechanism of a hydraulic-driven excavator. The main objective is to determine the moment when the highest forces occur in the traction and lifting hydraulic cylinders, as well as to determine the direction and magnitude of the reaction at the joint of the supporting shoe during the stepping process. The method of constructing force polygons is employed to achieve this goal. The obtained results of kinematic analysis and force characteristics of the walking mechanism will serve as a basis for further research on this mechanism. The findings of the study will allow for a more detailed examination of the behavior of the walking mechanism and optimize its operation.

Keywords: single-bucket excavator, dragline, walking mechanism, hydraulic drive, quarry, analysis of forces.
For citation:

Suslov N. M., Chernuhin S. A., Kaljanov A. E. Analysis of forces in the hydraulic walking mechanism. MIAB. Mining Inf. Anal. Bull. 2024;(1-1):140—152. [In Russ]. DOI: 10.25018
/0236_1493_2024_011_0_140.

 

Acknowledgements:
Issue number: 1
Year: 2024
Page number: 140-152
ISBN: 0236-1493
UDK: 621.879.323
DOI: 10.25018/0236_1493_2024_011_0_140
Article receipt date: 15.05.2023
Date of review receipt: 14.11.2023
Date of the editorial board′s decision on the article′s publishing: 10.12.2023
About authors:

Suslov N. M., Dr. Sci. (Eng.), Professor at the Department of Mining machines and complexes, e-mail: Nikolay.Suslov@m.ursmu.ru;
Chernuhin S. A., Cand. Sci. (Eng.), Associate Professor at the Department of Mining machines and complexes, ORCID iD: 0000-0003-3423-6129, e-mail: stas_chernuhin@ mail.ru (сorresponding author);
Kaljanov A. E., Cand. Sci. (Eng.), Associate Professor at the Department of Mining machines and complexes, ORCID iD: 0009−0008−69050416, e-mail: kalyanov.alexandr@ yandex.ru.

 

For contacts:

Chernuhin S. A., e-mail: stas_chernuhin@ mail.ru.

Bibliography:

1. Zlobina E. V. Statistical models for determining the operating parameters of walking excavators. Bulletin of KuzSTU. 2010, no. 5, pp. 90–92. [In Russ].

2. Grabsky A. A., Sergeev V. Yu. & Grabskaya E. P. Rationale for choosing a strategy for maintenance and repair of quarry excavators. Ugol. 2021, no. (2), pp. 14–17. [In Russ]. DOI: 10.18796/0041-5790-2021-2-14−17.

3. Klishin S. V., Klishin V. I., Opruk G. Y. Discrete element modeling of gravity flow of broken rocks in the technology of longwall top coal caving. IOP Conference Series: Earth and Environmental Science. 2018, vol. 206, 012007. DOI: 10.1088/1755−1315/206/1/012007.

4. Pevzner L. D., Kiselev N. A. Automatic control system for walking dragline excavator digging. Mining Science and Technology (Russia). 2022, vol. 7(1), pp. 57–65. DOI: https:// doi.org/10.17073/2500-0632-2022-1-57−65.

5. Karpenko S. M., Karpenko N. V., Bezginov G. Yu., Ematin E. A. Modeling of power consumption of coal mine excavators based on time series analysis. Energy security and energy saving. 2022, no. 6, pp. 38–44.

6. Haiquan Liu, Michael Kearney, Michael Forbes, Planning Dragline Positioning Sequence with A Search Algorithm. IFAC-PapersOnLine. 2017, vol. 50(1), pp. 12477–12483.

7. Zolotukhina N. V., Dudnik A. V. Walking excavators in the extraction of non-metallic minerals. Engineering tasks: problems and solutions: Collection of materials of the AllRussian (national) scientific and practical conference of the Higher School of Engineering of NArFU, Arkhangelsk, November 20, 2019. Arkhangelsk, Severny, 2019, pp. 129–132. [In Russ].

8. Vin Z. H., Pevsner L. D., Temkin I. O. Algorithmic and hardware support of the onboard information system of the walking dragline. MIAB. Mining Inf. Anal. Bull. 2019, no. 2, pp. 190–196. [In Russ]. DOI: 10.25018/0236-1493-2019-02−0-190−196.

9. Suslov N. M., Chernukhin S. A. Improvement of walking mechanisms that increase the efficiency of their use. News of the Ural State Mining University. 2018, iss. 3, pp. 108–113. [In Russ]. DOI: 10.21440/2307-2091-2018-3-108−113.

10. Pakhomov E. G., Bely V. A., Shlyavenko S. A., Demyan E. S. Determination of forces in the elements of the mechanism of a walking excavator. Energy-resource-saving technologies and equipment in the road and construction industries. Materials of the International scientific and practical conference, Belgorod, October 15–17, 2020. Belgorod, Belgorod State Technological University named after V. G. Shukhov, 2020, pp. 269–273. [In Russ].

11. Bezkorovayny P. G., Shestakov V. S., Yusupov T. I. Loading of hydraulic excavator implement in bucket movement. MIAB. Mining Inf. Anal. Bull. 2021, no. 11−1, pp. 209−218. [In Russ]. DOI: 10.25018/0236_1493_2021_111_0_209.

12. Sahu A. R., Palei S. K. Fault analysis of dragline subsystem using Bayesian network model. Reliability Engineering & System Safety. 2022, vol. 225, 108579.

13. Komissarov A. P., Lagunova V. Yu., Shestakov A. S., Ivanov I. Yu. Power consumption of single–bucket excavators. Mining Journal. 2018, no. 1, pp. 73–77. [In Russ]. DOI: 10.17580/gzh.2018.01.13.

14. Xiao S., Ma L., Dong G., Ding X. Parameters optimization of dragline working platform based on nonlinear programming. Journal of the China Coal Society. 2019, vol. 44, no. 10, pp. 3076–3084. DOI: 10.13225/j.cnki.jccs.2018.1462.

15. Sahu A. R., Palei S. K. Fault prediction of drag system using artificial neural network for prevention of dragline failure. Engineering Failure Analysis. 2020, vol. 113, 104542.

16. Liu H., Kearney M. P., Austin K. J. Dragline operation modelling and task assignment based on mixed-integer linear programming. Optimization and Engineering. 2018, vol. 19, pp. 1005–1036. DOI: https://doi.org/10.1007/s11081-018-9386-5.

17. Taerang Jung, Henrique Raduenz, Petter Krus, Victor J. De Negri, Jangmyung Lee. Boom energy recuperation system and control strategy for hydraulic hybrid excavators. Automation in Construction. 2022, no. 135, 104046.

18. Mishra A., Palei S. K., Gupta S. Reliability analysis of dragline using equivalent aging model. Arabian Journal for Science and Engineering. 2020, vol. 45, pp. 6975–6984. DOI: 10.1007/s13369-020-04622-3.

19. Palei S. K., Das S., Chatterjee S. Reliability-centered maintenance of rapier dragline for optimizing replacement interval of dragline components. Mining, Metall Explor. 2020, vol. 37, pp. 1121–1136. DOI: 10.1007/s42461-020-00226-5.

20. Suslov N. M., Chernukhin S. A., Suslov D. N. Improving the energy efficiency of a walking dragline. News of the Ural State Mining University. 2020, issue 3(59), pp. 131–139. [In Russ].

21. Komissarov A. P., Lagunova Yu. A., Nabiullin R. S., Khoroshavin S. A. Digital model of the process of rock excavation by working equipment of a quarry excavator. MIAB. Mining Inf. Anal. Bull. 2022, no. 4, pp. 156–168. [In Russ]. DOI: 10.25018/0236_1493_20 22_4_0_156.

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.