Analysis of the conditions facilitate to the development of the process of self-carrier-burning in coal stacks

Long-term storage of coal in coal piles increases the risk of spontaneous combustion due to the air oxidation of combustible components. The сoal stored in coal stacks is exposed to various environmental factors that can both slow down and accelerate the process of spontaneous combustion. Temperature and humidity of the air, speed and direction of air flows, precipitation influence the formation of fire seats to the greatest extent. The calculations have shown that the influence of the wind creates zones with increased gas pressure on the coal stack surface. The excess gas pressure can reach 100—200 Pa and depends on the wind speed, its density, the slope angle of the stack sides and the angle between the wind velocity vector and the tangent to the side surface. Laboratory experiments have shown that the permeability coefficient of a coal accumulation is 3.56 ∙ 10—9 m2, and the permeability can be decreased by
1.25 times by moistening the coal accumulation. The largest amount of air entering the coal stack is filtered along the side surface to the horizontal surface. The maximum air velocity in the accumulation is observed along the outline of the stack horizontal location. Considering that spontaneous combustion needs an intensive air inflow, the formation of a fire seat will occur on the stack sides or on its horizontal surface, at a slight distance from the stack side.

 

Keywords: spontaneous combustion process, coal stack, wind pressure, gas pressure drop, air filtration, wind speed, permeability coefficient, endogenous fire hazard, coal moisture.
For citation:

Portola V. A., Zhdanov A. N., Bobrovnikova A. A. Analysis of the conditions facilitate to the development of the process of self-carrier-burning in coal stacks. MIAB. Mining Inf. Anal. Bull. 2022;(6—1):187—197. [In Russ]. DOI: 10.25018/0236_1493_2022_61_0_187.

Acknowledgements:

The study was supported by the Russian Science Foundation grant № 22— 27—20004, https://rscf.ru/project/22—27—20004/

Issue number: 6
Year: 2022
Page number: 187-197
ISBN: 0236-1493
UDK: 622.822.222
DOI: 10.25018/0236_1493_2022_61_0_187
Article receipt date: 14.01.2022
Date of review receipt: 30.05.2022
Date of the editorial board′s decision on the article′s publishing: 10.05.2022
About authors:

Portola V. A., Dr. Sci. (Eng.), Professor, Professor of the Department of Aerology, Labor and Nature Protection, T. F. Gorbachev Kuzbass State Technical University, 650000, Kemerovo, 28 Vesennya St., Russia, e-mail: portola2@yandex.ru, ORCID ID: 0000-00027920-1248
Zhdanov Aleksandr Nikolaevich, deputy chief engineer (technology) — chief technologist SUEK-Kuzbass JSC Mining department of A. D. Rubana, 652507, Leninsk-Kuzneckij, 1 Shilina St, Russia, e-mail: ZhdanovAN@suek.ru, ORCID ID: 0000-0003-2142-6337
Bobrovnikova Alena Aleksandrovna, Dr. Sci. (Chem.), Associate Professor, theHead of the Department of Mineral Processing, T. F. Gorbachev Kuzbass State Technical University, 650000, Kemerovo, 28 Vesennya St., Russia, e-mail: baa.htnv@kuzstu.ru, ORCID ID: 0000-0002-6916-3831.

 

For contacts:

Portola V. A., e-mail: portola2@yandex.ru.

Bibliography:

1. Skochinsky A. A., Ogievsky V. M. Mine fires. Moscow, Publishing house “Mining” LLC “Cimmerian Center”, 2011. 375 p. [in Russ.]

2. Radionov V. A., Tursenev S. A., Skripnik I. L., Ksenofontov Yu.G. The results of the study of the kinetic parameters of spontaneous combustion of coal dust. Notes of the Mining Institute. 2020.. 246. P. 617—622. [in Russ.]

3. Rylnikova M. V., Radchenko D. N., Ainbinder G. I., Esina E. N. Evaluation of the relationship between spontaneous combustion of rocks and deformation processes in the combined development of pyrite ore deposits. News of the Tula State University. Earth Sciences. 2020. No. 2. P. 329—341. [in Russ.]

4. Karlov I. D., Portola V. A. Prevention of spontaneous combustion of coal shipped in railway cars. Life safety of enterprises in industrialized regions. Materials of the X International Scientific and Practical Conference Kemerovo, 2013. P.83—85. [in Russ.]

5. Tursenev S. A. Fire hazard of spontaneous combustion when transporting coal by sea. Marine Bulletin. 2010. No. 3 (35). P. 70—72. [in Russ.]

6. Akbarov T. G., Israilov M. A., Makhmudov D. R. Study and prevention of selfignition of coals of the Angren deposit. Mining information and analytical bulletin (scientific and technical journal). 2021. No. 1. P. 170—177. [in Russ.]

7. Lin Q., Wang S., Song S., Liang Y., Ren T. Analytical prediction of coal spontaneous combustion tendency: velocity range with possibility of self-ignition. Fuel Processing Technolo-gy. 2017.159.P. 38—47.

8. Portola, V. Detection and location of places of spontaneous combustion of coal in mines due to gas anomalies on the earth’s surface. V. Portola, A. Bobrovnikova, G. Shirokolobov, D. Paleev. E3S Web Conf., Vth International Innovative Mining Symposium, 174, 01061 (2020), P. 1—7.

9. Zhang L., Qin B. Rheological characteristics of foamed gel for mine fire control. Fire and Materials. 2016.40 (2). P. 246—260.

10. M. Onifade, B. Genc. Spontaneous combustion of coals and coal-shales. International Journal of Mining Science and Technology. 28 (2018), pp. 993—940

11. Zhang Y., Liu Y., Shi X., Yang C., Wang W., Li Y. Risk evaluation of coal spontaneous combustion on the basis of auto-ignition temperature. Fuel, 233 (2018), pp. 68—76.

12. Erastov A.Yu., Shlapakov E. A., Haymin S. A. Application of the EMP method to control the endogenous fire hazard of coal pillars. Bulletin of the Scientific Center VostResearch Institute for Industrial and Environmental Safety. 2017. No. 2. P. 23—26. [in Russ.]

13. Puchkov L. A., Kaledina N. O., Kobylkin S. S. Aerodynamic method for prevention of endogenous fire hazard in mined-out spaces of coal mines. Mining information and analytical bulletin (scientific and technical journal). 2012. No. 12. P. 307—311. [in Russ.]

14. Semenova S. A., Patrakov Yu.F., Mayorov A. E. Oxidation of coal in seams and methods for assessing the propensity of coal to oxidation and spontaneous combustion (Review). Coke and chemistry. 2020. No. 5. P. 12—21. [in Russ.]

15. Yuan H., Restuccia F., Richter F., Rein G. A computational model to simulate selfheating ignition across scales, configurations, and coal origins. Fuel, 236 (2019), pp. 1100— 1109

16. Mayorov A. E., Patrakov Yu.F., Semenova S. A., Abramov I. L., Nepeina E. S. Substantiation of the relevance of injection localization and deactivation of endogenous spontaneous combustion. Science-intensive technologies for the development and use of mineral resources. 2020. No. 6. P. 324—330. [in Russ.]

17. Sin S. A. The use of nitrogen to combat spontaneous combustion of coal in mines. Bulletin of KuzGTU. 2015. No. 1. P. 167—171. [in Russ.]

18. Kovrizhin O. I., Kolyada A.Yu., Kalinichenko N. A. The use of gaseous nitrogen in the elimination of underground fires. Scientific Bulletin of NIIGD Re-spirator. 2020. No. 5 (57). P. 37—44. [in Russ.]

19. Deng J., Zhao, J.-Y., Zhang, Y.-N., Wang, C.-Р., Huang, A.-C., Shu, C.-M. Thermal behavior and microcharacterization analysis of second-oxidized coal. Journal of Thermal Analysis &amp. 2017. 127 (№1). Р. 439—448.

20. Portola VA, Ovchinnikov AE, Zhdanov AN Evaluation of measures to prevent endogenous fires in coal mines. Mining information and analytical bulletin. 2019. No. 12. P. 205–214. [in Russ.]

21. Yutyaev E. P., Portola V. A., Meshkov A. A., Kharitonov I. L., Zhdanov A. N. Development of the self-heating process in coal accumulations under the influence of molecular diffusion of oxygen. Coal. 2018. No. 10 (1111). P. 42–46. [in Russ.]

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.