Effect of seepage flow through frozen wall on brine temperature in freeze pipes

One of the indirect signs of the required thickness and integrity gained by the frozen wall in brine freezing of rocks and soils is the temperature difference of 1–2 °С between the cooling agent (brine) in the direct and return brine pipes. At the same time, intense mass exchange processes in rock mass can make the required temperature difference unattainable. For instance, at sufficiently heavy seepage flow of groundwater at certain depth levels, some rock zones may remain unfrozen between the neighbor freeze pipes. Water will seep through these zones, and generation of a solid frozen wall will take much longer time or will never happen at all. Prompt detection of such local discontinuities caused in the frozen wall by unfrozen seepage zones between some freeze pipes is critical from the viewpoint of safety of further sinking under shelter of the frozen wall. In the meanwhile, the current practices of frozen wall monitoring are at loss when detecting local discontinuities. This article offers a theoretical examination of a possible method for the indirect detection of discontinuities in frozen walls by the return brine temperatures measured at the outlets of different freeze pipes. The heat flow required to be transferred to a freeze pipe to make the brine temperature ‘response’ at the freeze pipe outlet exceed the preset sensitivity of the temperature sensor is evaluated. The evaluation was performed as a case-study of an actual potash mine under construction in Belarus.

Keywords: artificial ground freezing, frozen wall, heat and mass transfer, groundwater seepage, mathematical modeling.
For citation:

Semin M. A., Bogomyagkov A. V., Pugin A. V. Effect of seepage flow through frozen wall on brine temperature in freeze pipes. MIAB. Mining Inf. Anal. Bull. 2022;(3):60-77. [In Russ]. DOI: 10.25018/0236_1493_2022_3_0_60.

Acknowledgements:

The study was supported by the Ministry of Science and Higher Education in the Perm Krai, Agreement No. S-26/563.

Issue number: 3
Year: 2022
Page number: 60-77
ISBN: 0236-1493
UDK: [69+622.57.0151(083.74)
DOI: 10.25018/0236_1493_2022_3_0_60
Article receipt date: 30.09.2021
Date of review receipt: 09.12.2021
Date of the editorial board′s decision on the article′s publishing: 10.02.2022
About authors:

M.A. Semin1, Cand. Sci. (Eng.), Researcher, e-mail: seminma@inbox.ru, Scopus ID 56462570900,
A.V. Bogomyagkov1, Junior Researcher, e-mail: bavaerolog@gmail.com, Scopus ID 57218893401,
A.V. Pugin1, Cand. Sci. (Phys. Mathem.), Researcher, e-mail: lyosha.p@gmail.com, Scopus ID 15729767700,
1 Mining Institute of Ural Branch, Russian Academy of Sciences, 614007, Perm, Russia.

 

For contacts:

M.A. Semin, e-mail: seminma@inbox.ru.

Bibliography:

1. Shcherban P., Razumovich S., Eliseev A. Sinking of vertical mine openings in unstable, water-bearing strata using mobile hydraulic complex. Proceedings of 3rd International Conference on Management – Economics – Ethics – Technology (MEET 2017). 2017, pp. 97—106.

2. Yao Z., Cai H., Xue W., Wang X., Wang Z. Numerical simulation and measurement analysis of the temperature field of artificial freezing shaft sinking in Cretaceous strata. AIP Advances. 2019, vol. 9, no. 2, article 025209. DOI:10.1063/1.5085806.

3. Nasonov I. D., Fedyukin V. A., Shuplik M. N., Resin V. I. Tekhnologiya stroitel’stva podzemnykh sooruzheniy. Spetsial’nye sposoby stroitel’stva [Construction Technology for Underground Structures. Special Construction Methods], Moscow, Nedra, 1992, 351 p.

4. Trupak N. G. Zamorazhivaniye gruntov v podzemnom stroitel'stve [Ground freezing in underground construction], Moscow, Nedra, 1974, 280 p.

5. Hentrich N., Franz J. About the application of conventional and advanced freeze circle design methods for the Ust-Jaiwa freeze shaft project. Vertical and Decline Shaft Sinking: Good Practices in Technique and Technology, International Mining Forum. Poland, 2015, pp. 89—104.

6. Sheng T.-B., Wei S.-Y. Measurement and engineering application of temperature field multiple-ring hole frozen wall in extra-thick clay strata. Chinese Journal of Geotechnical Engineering. 2012, vol. 34, no. 8, pp. 1516—1521.

7. Hu J., Liu Y., Li Y., Yao K. Artificial ground freezing in tunnelling through aquifer soil layers: a case study in nanjing metro line 2. KSCE Journal of Civil Engineering. 2018, vol. 22, pp. 4136—4142. DOI: 10.1007/s12205-018-0049-z.

8. Alzoubi M. A., Sasmito A. P., Madiseh A., Hassani F. P. Intermittent Freezing Concept for Energy Saving in Artificial Ground Freezing Systems. Energy Procedia. 2017, vol. 142, pp. 3920–3925. DOI: 10.1016/j.egypro.2017.12.297.

9. Rouabhi A., Jahangir E., Tounsi H. Modeling heat and mass transfer during ground freezing taking into account the salinity of the saturating fluid. International Journal of Heat and Mass Transfer. 2018, vol. 120, pp. 523—533. DOI: 10.1016/j.ijheatmasstransfer.2017.12.065.

10. Vyalov S. S., Zaretsky Yu. K., Gorodetsky S. E. Stability of mine workings in frozen soils. Engineering Geology. 1979, vol. 13 pp. 339—351.

11. Brovka G. P., Agutin K. A., Muchko M. V., Lipnitsky N. A. Calculations of the temperature regime and energy costs in the ice wall forming for sinking mine shafts. Inzhenernaya geologiya. 2021, vol. 16, no. 1, pp. 74—85. [In Russ]. DOI: 10.25296/1993-5056-2021-16-1-74-84.

12. Vityaz P. A., Golovaty I. I., Prushak V. Ya., Diulin D. A. Technology of performance of ice wall when sinking shafts at the example of the objects of the petrikov mining. Izvestiya Nacional'noy akademii nauk Belarusi. Seriya fiziko-tehnicheskih nauk. 2019, vol. 64, no. 3, pp. 366–377. [In Russ]. DOI: 10.29235/1561-8358-2019-64-3-366-377.

13. Pimentel E., Papakonstantinou S., Anagnostou G. Numerical interpretation of temperature distributions from three ground freezing applications in urban tunneling. Tunnelling and Underground Space Technology. 2012, vol. 28, pp. 57–69. DOI: 10.1016/j.tust.2011.09.005.

14. Levin L. Yu., Semin M. A., Zaitsev A. V. Adjustment of thermophysical rock mass properties in modeling frozen wall formation in mine shafts under construction. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2019, no. 1, pp. 172–184. [In Russ]. DOI: 10.15372/FTPRPI20190119.

15. Tounsi H., Rouabhi A., Tijani M., Guérin F. Thermo-hydro-mechanical modeling of artificial ground freezing: application in mining engineering. Rock Mechanics and Rock Engineering. 2019, vol. 52, no. 10, pp. 3889—3907.

16. VSN 189-78. Instruktsiya po proektirovaniyu i proizvodstvu rabot po iskusstvennomu zamorazhivaniyu gruntov pri stroitel'stve metropolitenov i tonneley [Instructions for the design and production of works on artificial freezing of soils during the construction of subways and tunnels]. Moscow, Mintransstroy, 1978, 117 p.

17. Semin M. A., Levin L. Yu., Parshakov O. S. Influence of groundwater seepage on artificial freezing of rock mass. Inzhenerno-fizicheskiy zhurnal. 2021, no. 1, pp. 51—61. [In Russ].

18. Sudisman R. A., Osada M., Yamabe T. Experimental investigation on effects of water flow to freezing sand around vertically buried freezing pipe. Journal of Cold Regions Engineering. 2019, vol. 33, no. 3. DOI: 10.1061/(ASCE)CR.1943-5495.0000187.

19. Huang S., Guo Y., Liu Y., Ke L., Liu G., Chen C. Study on the influence of water flow on temperature around freeze pipes and its distribution optimization during artificial ground freezing. Applied Thermal Engineering. 2018, vol. 135, pp. 435–445. DOI: 10.1016/j.applthermaleng.2018.02.090.

20. Parshakov O. S. Razrabotka avtomatizirovannoy sistemy termometricheskogo kontrolya ledoporodnykh ograzhdeniy [Development of an automated system for thermometric control of frozen walls], Candidate’s thesis, Perm, 2020, 140 p.

21. Khakimov H. R. Voprosy teorii i praktiki iskusstvennogo zamorazhivaniya gruntov [Questions of the theory and practice of artificial soil freezing], Moscow, Akademiya nauk SSSR, 1957, 191 p.

22. Wu T., Zhou X., Zhang L., Zhang X., He X., Xu Y. Theory and technology of real-time temperature field monitoring of vertical shaft frozen wall under high-velocity groundwater conditions. Cold Regions Science and Technology. 2021, vol. 189, article 103337. DOI: 10.1016/j. coldregions.2021.103337.

23. Liu Y., Li K.-Q., Li D.-Q., Tang X.-S., Gu S.-X. Coupled thermal–hydraulic modeling of artificial ground freezing with uncertainties in pipe inclination and thermal conductivity. Acta Geotechnica. 2021, pp. 1—18. DOI: 10.1007/s11440-021-01221-w.

24. Wang T., Liu Y., Zhou G., Wang D. Effect of uncertain hydrothermal properties and freezing temperature on the thermal process of frozen soil around a single freezing pipe. International Communications in Heat and Mass Transfer. 2021, vol. 124, article 105267. DOI: 10.1016/j. icheatmasstransfer.2021.105267.

25. Semin M., Golovatyi I., Pugin A. Analysis of temperature anomalies during thermal monitoring of frozen wall formation. Fluids. 2021, vol. 6. DOI: 10.3390/fluids6080297.

26. Gnielinski V. G1 Heat transfer in turbulent flow through pipes. VDI Heat Atlas. Springer: Berlin/Heidelberg, Germany, 2010, pp. 696—702.

27. Vitel M., Rouabhi A., Tijani M., Guérin F. Modeling heat transfer between a freeze pipe and the surrounding ground during artificial ground freezing activities. Computers and Geotechnics. 2015, vol. 63, pp. 99—111. DOI: 10.1016/j.compgeo.2014.08.004.

28. Sharfarets B. P., Kurochkin V. E. To the question of mobility of particles and molecules in porous media. Nauchnoe priborostroenie. 2015, vol. 25, no. 4, pp. 43—55. [In Russ].

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.