Analysing the influence of the scroll compressor working element kinematics on its volumetric characteristics

This paper is devoted to the improvement of scroll compressors and the possibility of their use in mining, pneumatic and climate control applications. The scroll compressor has proven itself in low and medium pressure applications, with its design allowing for a higher degree of pressure increase and a wider range of applications. However, as the pressure increases, the leakage in the working part of the compressor increases, which is the dominant type of losses in this type of machine. The aim of the work is to clarify the quantitative component of leakages at change of the compressor capacity related to the kinematics of the working parts. The solution is based on the creation of an adapted mathematical model of medium flow through gaps in the flow part of the compressor, which takes into account the mobility of the slot wall. The method of calculation of volumetric losses, built on its basis, allows to obtain data with an error of 4.8% from the data stated by the manufacturer, while the classical method gives an error of about 7%. The degree of influence of the slit wall mobility between the scrolls on the compressor volume losses is estimated. The prospect of using the compressor in the field of pneumatic and climatic engineering and other mining operations is shown.

Keywords: scroll compressor, mine methane, working medium leakage, slit wall mobility, kinematics of working bodies, mining equipment, pneumatics, model of unsteady flow of the medium, calculation of the supply coefficient.
For citation:

Pronin V. A., Kovanov A. V., Tsvetkov V. A., Kononenko R. V., Popov M. A. Analysing the influence of the scroll compressor working element kinematics on its volumetric characteristics. MIAB. Mining Inf. Anal. Bull. 2023;(11-1):130-143. [In Russ]. DOI: 10.25018/023 6_1493_2023_111_0_130.

Acknowledgements:
Issue number: 11
Year: 2023
Page number: 130-143
ISBN: 0236-1493
UDK: 621.574
DOI: 10.25018/0236_1493_2023_111_0_130
Article receipt date: 17.08.2023
Date of review receipt: 04.10.2023
Date of the editorial board′s decision on the article′s publishing: 10.10.2023
About authors:

V.A. Pronin1, Dr. Sci. (Eng.), Professor, e-mail: vapronin@itmo.ru, ORCID ID: 0000-0002-9278-5903,
A.V. Kovanov1, Graduate Student, e-mail: avkovanov@itmo.ru, ORCID ID: 0000-0003-2821-795X,
V.A. Tsvetkov1, Graduate Student, e-mail: vatsvetkov@itmo.ru, ORCID ID: 0000-0003-4357-0022,
R.V. Kononenko2, Cand. Sci. (Eng.), Assistant Professor, e-mail: iistu_politeh@mail.ru,
M.A. Popov2, Research Engineer, e-mail: popovma.kvantum@gmail.com,
1 ITMO University, 191002, Saint-Petersburg, Russia,
2 Irkutsk National Research Technical University, 664074, Irkutsk, Russia,

 

For contacts:

A.V. Kovanov, e-mail: avkovanov@itmo.ru.

Bibliography:

1. Voronin V. A., Nepsha F. S., Ermakov A. N., Kantovich L. I. Analysis of electrical equipment operating modes of the excavation site of a modern coal mine. Sustainable Development of Mountain Territories. 2021, vol. 13, no. 4, pp. 599—607. [In Russ]. DOI: 10.21177/1998-4502-

2021-13-4-599-607.

2. Kulikova E. Yu., Balovtsev S. V., Skopintseva O. V. Complex estimation of geotechnical risks in mine and underground construction. Sustainable Development of Mountain Territories. 2023, vol. 15, no. 1, pp. 7—16. [In Russ]. DOI: 10.21177/1998-4502-2023-15-1-7-16.

3. Gruting U., Schutte C., Wa van Laar Jean Investigating the link between compressed air wast-age and ventilation shortfalls in deeplevel mines. South African Journal of Industrial Engineering. 2022, vol. 33, no. 3, pp. 109—123. DOI: 10.7166/33-3-2786.

4. Efremenkov E. A., Shanin S. A., Martyushev N. V. Development of an algorithm for computing the force and stress parameters of a cycloid reducer. Mathematics. 2023, vol. 11, no. 4, article 993. DOI: 10.3390/math11040993.

5. Kuznetsov Yu. N., Stadnik D. А., Stadnik N. M., Shadyzheva E. B. Methodological bases for synthesis operation models for control of the reproduction process of the advancing faces of coal mines. Sustainable Development of Mountain Territories. 2022, vol. 14, no. 4, pp. 685— 694. [In Russ]. DOI: 10.21177/1998-4502-2022-14-4-685-694.

6. Pronin V. A., Kovanov A. V., Tsvetkov V. A., Mikhailova E. N. A Systematic approach to improve the efficiency of a CO2 booster refrigerating machine by optimising the performance of the scroll compressor. Proceedings of the 8th International Conference on Industrial Engineering. ICIE 2022. Lecture Notes in Mechanical Engineering. Springer, Cham. 2023, pp. 174—184. DOI: 10.1007/978-3-031-14125-6_18.

7. Swanepoel J., Vosloo J. C., van Laar J. H., Pelser W. A. Prioritisation of environmental improvement projects in deep-level mine ventilation systems. Mining, Metallurgy & Exploration. 2023, vol. 40, no. 2, pp. 599—616. DOI: 10.1007/s42461-023-00738-w.

8. Friedenstein B. M., Cilliers C., van Rensburg J. Simulating operational improvements on mine compressed air systems. South African Journal of Industrial Engineering. 2018, vol 29, no. 3, pp. 69—81. DOI: 10.7166/29-3-2049.

9. Isametova M. E., Nussipali R., Martyushev N. V., Malozyomov B. V., Efremenkov E. A., Isametov A. Mathematical modeling of the reliability of polymer composite materials. Mathematics. 2022, vol. 10, no. 21, article 3978. DOI: 10.3390/math10213978.

10. Yelemessov K., Sabirova L. B., Martyushev N. V., Malozyomov B. V., Bakhmagambetova G. B., Atanova O. V. Modeling and Model Verification of the Stress-Strain State of Reinforced Polymer Concrete. Materials. 2023, vol. 16, no. 9, article 3494. DOI: 10.3390/ma16093494.

11. Jian S., Bin P., Bingguo Z. Numerical simulation and experimental research of oil-free scroll air compressor based on CFD. Recent Patents on Mechanical Engineering. 2022, vol. 15, no. 3, pp. 328—339. DOI: 10.2174/2212797614666210830154422.

12. Kottapalli A., Konijeti R. K. Numerical and experimental investigation of nonlubricated air scroll expander derived from a refrigerant scroll compressor. Frontiers in Heat and Mass Transfer (FHMT). 2022, vol. 19, no. 11. DOI: 10.5098/hmt.19.11.

13. Sun J., Peng B., Zhu B. Internal thermodynamic characteristics and performance test of new oil-free scroll compressor. Jilin Daxue Xuebao (Gongxueban). Journal of Jilin University (Engineering and Technology Edition). 2023, vol. 52, pp. 2778—2787. DOI: 10.13229/j.cnki. jdxbgxb20210465.

14. Zheng S., Wei M., Hu C., Song P., Tian R. Flow characteristics of tangential leakage in a scroll compressor for automobile heat pump with CO2. Science China Technological Sciences. 2021, vol. 64, no. 5, pp. 971—983. DOI: 10.1007/s11431-020-1765-3.

15. Efremenkov E. A., Martyushev N. V., Skeeba V. Y., Grechneva M. V., Olisov A. V., Ens A. D. Research on the possibility of lowering the manufacturing accuracy of cycloid transmission wheels with intermediate rolling elements and a free cage. Applied Sciences. 2022, vol. 12, no. 1, article 5. DOI: 10.3390/app12010005.

16. Kondrat’ev V. V., Govorkov A. S., Lavrent’eva M. V., Sysoev I. A., Karlina I. Description of the heat exchanger unit construction, created in IRNITU. International Journal of Applied Engineering Research. 2016, vol. 11, no. 19, pp. 9979—9983.

17. Nemarov A. A., Lebedev N. V., Kondrat’ev V. V., Kornyakov M. V., Karlina A. I. Theoretical and experimental research of parameters of pneumatic aerators and elementary cycle flotation. International Journal of Applied Engineering Research. 2016, vol. 11, no. 20, pp. 10222—10226.

18. Kondratiev V. V., Karlina A. I., Guseva E. A., Konstantinova M. V., Kleshnin A. A. Processing and application of ultra disperse wastes of silicon production in construction. IOP Conference Series: Materials Science and Engineering. 2018, vol. 463, no. 3, article 032068. DOI: 10.1088/1757-899X/463/3/032068.

19. Zheng S. Y., Wei M. S., Zhou Y., Hu C. X., Song P. P. Tangential leakage flow control with seal-grooves on the static scroll of a CO₂ scroll compressor. Applied Thermal Engineering. 2022, vol. 208, article 118213. DOI: 10.1016/j.applthermaleng.2022.118213.

20. Fanti G. R., Romao D. A., de Almeida R. B., de Mello P. E. B. Influence of flank clearance on the performance of a scroll expander prototype. Energy. 2020, vol. 193, article 116823. DOI: 10.1016/j.energy.2019.116823.

21. Sun S. H., Wang X. W., Guo P. C., Wu K., Liu G. B. Numerical analysis of the transient leak-age flow in axial clearance of a scroll refrigeration compressor. Proceedings of the Institution of Mechanical Engineers Part E Journal of Process Mechanical Engineering. 2019, vol. 236, pp. 1989—1996. DOI: 10.1177/0954408919870910.

22. Zha H. B., Song Y. X., Wang J., Jiang Y., Qiu X. Q. A gas leakage model in the leakage clearance of scroll compressor. Journal of Engineering Thermophysics. 2016, vol. 37, pp. 1438— 1443.

23. Rak J., Pietrowicz S., Gnutek Z. 3D numerical calculations of tangent leakages in scroll compressor during unsteady process. Progress in Computational Fluid Dynamics, An International Journal. 2017, vol. 17, no. 6, pp. 344—351. DOI: 10.1504/PCFD.2017.088795.

24. Raikov A. A., Salikeev S. A., Burmistrov A. V., Tyurin A. V. Improvement of methods of calculation of a spiral vacuum pump on the basis of analysis of indicator diagrams of the working process. Kompressornaya tekhnika i pnevmatika. 2022, no. 2, pp. 36—40. [In Russ].

25. Pronin V. A., Kuznetsov Y. L., Zhignovskaia D. V., Minikaev A. F., Yerezhep D. Improving methodology calculating the leakages compressible environment in the working part of a screw compressor. AIP Conference Proceedings. 2019, vol. 2141, article 030010. DOI: 10.1063/1.5122060.

26. Sun J., Peng B., Zhu B., Li Y. Analysis of tangential leakage flow characteristics of oilfree scroll expander for a micro-scale compressed air energy storage system. Entropy. 2023, vol. 25, article 339. DOI: 10.3390/e25020339.

27. Wang J., Liu T. Leakage model of axial clearance and test of scroll compressors. Journal of Shanghai Jiaotong University (Science). 2020, vol. 25, no. 4, pp. 531—537. DOI: 10.1007/ s12204-020-2163-6.

28. Pereira E. L. L., Braga V. M., Deschamps C. J. Data from the numerical analysis of radial and tangential leakage of gas in scroll compressors. Data in Brief. 2020, vol. 29, article 105197. DOI: 10.1016/j.dib.2020.105197.

29. Pereira E. L. L., Deschamps C. J. Numerical analysis and correlations for radial and tangential leakage of gas in scroll compressors. International Journal of Refrigeration. 2020, vol. 110, pp. 239—247. DOI: 10.1016/j.ijrefrig.2019.11.002.

30. Peng B., Vincent L., Arnaud L., Zhang H. S., Gong H. F. Variable thickness scroll compressor performance analysis—Part I: Geometric and thermodynamic modeling. Proceedings of the Institution of Mechanical Engineers Part E Journal of Process Mechanical Engineering. 2016, vol. 231, no. 4, pp. 633—640. DOI: 10.1177/0954408916640418.

31. Kovanov A. V., Zhignovskaia D. V., Pronin V. A., Tsvetkov V. A. The aperture’s classification of working organs of scroll compressor, the estimation of their influence on supply coefficient. AIP Conference Proceedings. 2021, vol. 2412, article 030046. DOI: 10.1063/5.0075151.

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.