Analysis of water conditions and evolution of rock mass at a mining industry object after reclamation

The article presents the research into water conditions and evolution of rock mass at a mining industry object after reclamation. It is hypothesized that water conditions of rock mass at a reclaimed tailings pond are directly connected with deformation processes in the surface layer of the tailings pond. A methodology is developed and tested, that takes into account both studies of some reservoir properties of rocks, such as porosity, permeability, water saturation and compressibility, and seismic monitoring data on the test area. As a result of the accomplished research, the main parameters influencing technogenesis at the Unal tailings pond are determined, namely: climate (mountain and valley winds, seasonality and abundance of rainfall); volume of water feed from drain area; specific nature of water conditions of rock mass at the mining industry object after its reclamation. The quantity of water is determined and differentiated with respect to the volume of rainfall supply on the surface of the tailings pond along the main paths. During field works, the water conditions of the reclaimed tailing pond were investigated, the results were analyzed, and the conclusion on the required development of new monitoring methods for comprehensive understanding of evolution of technogenesis at the tailings pond was drawn. Finally, it is proposed to undertake a special research in the form of the stress–strain monitoring of the tailings pond body with respect to the seismic factors and their influence on evolution of water conditions of rock mass, and probability of flow rock origination.

Keywords: water conditions, geotechnical monitoring, stress–strain behavior, flow rock, physical and mechanical properties, leveling, seismicity.
For citation:

Fomenko V. A., Makovozova Z. E., Sokolov A. A., Aksenova M. A., Kovalev G. S. Analysis of water conditions and evolution of rock mass at a mining industry object after reclamation. MIAB. Mining Inf. Anal. Bull. 2025;(5):118-129. [In Russ]. DOI: 10.25018/ 0236_1493_2025_5_0_118.

Acknowledgements:

The studies were carried out at the Southern Federal University and supported by the Russian Science Foundation, Projects Nos. RNF/23-37-GL and 23-77-00015.

Issue number: 5
Year: 2025
Page number: 118-129
ISBN: 0236-1493
UDK: 502.3/.7:504:504:622.17
DOI: 10.25018/0236_1493_2025_5_0_118
Article receipt date: 31.01.2025
Date of review receipt: 05.03.2025
Date of the editorial board′s decision on the article′s publishing: 10.04.2025
About authors:

V.A. Fomenko1, Cand. Sci. (Eng.), Assistant Professor, e-mail: vafomenko@sfedu.ru, ORCID ID: 0000-0002-3791-8793,
Z.E. Makovozova2, Cand. Sci. (Geol. Mineral.), e-mail: geologistik@bk.ru, ORCID ID: 0009-0000-3555-4394,
A.A. Sokolov1, Cand. Sci. (Eng.), Assistant Professor, Head of Chair, e-mail: anso@sfedu.ru, ORCID ID: 0000-0002-1127-9612,
M.A. Aksenova1, Assistant of Chair, e-mail: maaksenova@sfedu.ru, ORCID ID 0009-0005-5482-4691,
G.S. Kovalev2, Student, e-mail: georkovalev@mail.ru, ORCID ID 0009-0005-6016-0545,
1 Branch of Southern Federal University in Gelendzhik, 353461, Gelendzhik, Russia,
2 North Caucasus Mining and Metallurgical Institute (State Technological University), 362021, Vladikavkaz, Republic of North Ossetia-Alania, Russia.

 

For contacts:

A.A. Sokolov, e-mail: anso@sfedu.ru.

Bibliography:

1. Brantut N., Heap M. J., Baud P., Meredith P. G. Mechanisms of time-dependent deformation in porous limestone. Journal of Geophysical Research: Solid Earth. 2014, vol. 119, no. 7, pp. 5444—5463. DOI: 10.1002/2014JB011186.

2. Cacace M., Blöcher G. M., Watanabe N., Moeck I., Börsing N., Scheck-Wenderoth M., Kolditz O., Huenges E. Modelling of fractured carbonate reservoirs: outline of a novel technique via a case study from the Molasse Basin, southern Bavaria, Germany. Environmental Earth Sciences. 2013, vol. 70, no. 8, pp. 3585—3602. DOI: 10.1007/s12665-013-2402-3.

3. Kulikova E. Yu., Balovtsev S. V., Skopintseva O. V. Comprehensive assessment of geoecological risks in conducting open and underground mining. Sustainable Development of Mountain Territories. 2024, vol. 16, no. 1, pp. 205—216. [In Russ]. DOI: 10.21177/1998-4502-2024-16-1-205-216.

4. Moosavi S. A., Goshtasbi K., Kazemzadeh E., Bakhtiari H. A., Esfahani M. R., Vali J. Relationship between porosity and permeability with stress using pore volume compressibility characteristic of reservoir rocks. Arabian Journal of Geosciences. 2014, vol. 7, no. 1, pp. 231—239. DOI: 10.1007/ s12517-012-0760-x.

5. Ghabezloo S., Sulem J., Saint-Marc J. Evaluation of a permeability—porosity relationship in a low-permeability creeping material using a single transient test. International Journal of Rock Mechanics and Mining Sciences. 2009, vol. 46, no. 4, pp. 761—768. DOI: 10.1016/j.ijrmms.2008.10.003.

6. Benson P., Schubnel A., Vinciguerra S., Trovato C., Meredith P., Young R. P. Modeling the permeability evolution of microcracked rocks from elastic wave velocity inversion at elevated isostatic pressure. Journal of Geophysical Research. 2006. DOI: 10.1029/2005JB003710.

7. Anovitz L. M., Cole D. R. Characterization and analysis of porosity and pore structures. Reviews in Mineralogy and Geochemistry. 2015, vol. 80, no. 1, pp. 61—164. DOI: 10.2138/rmg.2015.80.04.

8. Shabanov M. V., Marichev M. S., Mangiyeva S. S., Sokolov A. A. Chemozem formation under conditions of prolong exposure to aero-industrial emissions from a mining and smelting plant. Sustainable Development of Mountain Territories. 2023, vol. 15, no. 3, pp. 727—740. [In Russ]. DOI: 10.21177/1998-4502-2023-15-3-727-740.

9. Lucia F. J. Petrophysical parameters estimated from visual descriptions of carbonate rocks: a field classification of carbonate pore space. Journal of Petroleum Technology. 1983, vol. 35, no. 3, pp. 629— 637. DOI: 10.2118/10073-PA.

10. Yaitskaya N. A., Brigida V. S. Geoinformation technologies in solving three-dimensional geoecological problems: spatial data interpolation. Geology and geophysics of Russian South. 2022, vol. 12, no. 1, pp. 162—173. [In Russ]. DOI: 10.46698/VNC.2022.86.27.012.

11. Shestopalov V. L., Fomenko V. A., Sokolov A. A., Miroshnikov A. S. Comparative analysis of deformation methods for monitoring seismic activity in the mountainous regions of the Black Sea coast and Kamchatka. Sustainable Development of Mountain Territories. 2021, vol. 13, no. 4, pp. 535—543. [In Russ]. DOI: 10.21177/1998-4502-2021-13-4-535-543.

12. Fomenko V. A., Sokolov A. A., Lolaev A. B., Aimbetova I. O. Some results of the work on the evaluation of radon emanations at Unal tailings. Sustainable Development of Mountain Territories. 2022, vol. 14, no. 4, pp. 576—585. [In Russ]. DOI: 10.21177/1998-4502-2022-14-4-576-585.

13. Dzeboev S. O. Vliyanie tekhnogeneza na formirovanie prirodno-tekhnicheskoy sistemy — namyvnoy tekhnogenniy gruntoviy massiv i ekologicheskaya bezopasnost' gornykh territoriy (na primere Unal'skogo khvostokhranilishcha, Respublika Severnaya Osetiya — Alaniya) [The influence of technogenesis on the formation of a natural-technical system — alluvial technogenic soil massif and environmental safety of mountainous territories (on the example of the Unal tailings dump, Republic of North Ossetia — Alania)], Candidate’s thesis, Vladikavkaz, 2022, 21 p.

14. Seysmicheskiy risk i inzhenernye resheniya. Per. s angl. Pod red. Ts. Lomnittsa, E. Rozenblyuta [Seismic risk and engineering solutions: Trans. from English. C. Lomnitz, E. Rosenbluth (Eds.)], Moscow, Nedra, 1981, 375 p.

15. Voznesensky E. A. Earthquakes and soil dynamics. Soros educational journal. 1998, no. 2, pp. 101—108. [In Russ].

16. Zaalishvili V. B., Melkov D. A., Martyushev N. V., Klyuev R. V., Kukartsev V. V., Konyukhov V. Y., Kononenko R. V., Gendon A. L., Oparina T. A. Radon emanation and dynamic processes in highly dispersive media. Geosciences. 2024, vol. 14, no. 4, article 102. DOI: 10.3390/geosciences14040102.

17. Bakhtiari H. A., Moosavi A., Kazemzadeh E., Kamran G., Esfahani M. R., Vali J. The effect of rock types on pore volume compressibility of limestone and dolomite samples. Geopersia. 2011, vol. 1, no. 1, pp. 37—82. DOI: 10.22059/jgeope.2011.22163.

18. Meng F., Li X., Baud P., Wong T. Bedding anisotropy and effective stress law for the permeability and deformation of clayey sandstones. Rock Mechanics and Rock Engineering. 2020. DOI: 10.1007/ s00603-020-02306-w.

19. Menke H. P., Maes J., Geiger S. Upscaling the porosity-permeability relationship of a microporous carbonate for Darcy-scale flow with machine learning. Scientific Reports. 2021, vol. 11, no. 1, 2625. DOI: 10.1038/s41598-021-82029-2.

20. Settari A., Al-Ruwaili K., Sen V. Upscaling of geomechanics in heterogeneous compacting reservoirs. SPE Reservoir Simulation Symposium. Society of Petroleum Engineers, 2013. DOI: 10.2118/163641-MS.

21. Hassanzadegan A., Guérizec R., Reinsch T., Blöcher G., Zimmermann G., Milsch H. Static and dynamic moduli of malm carbonate: a poroelastic correlation. Pure and Applied Geophysics. 2016, vol. 173, no. 8, pp. 2841—2855. DOI: 10.1007/s00024-016-1327-7.

22. Rashid F., Glover P., Lorinczi P., Collier R., Lawrence J. Porosity and permeability of tight carbonate reservoir rocks in the north of Iraq. Journal of Petroleum Science and Engineering. 2015, vol. 133, pp. 147—161. DOI: 10.1016/j.petrol.2015.05.009.

23. Lucia F. J. Rock-fabric petrophysical classification of carbonate pore-space for reservoir characterization. AAPG Bulletin. 1995, vol. 79, pp. 1275—1300. DOI: 10.1306/7834d4a4-1721-11d78645000102c1865d.

24. Lucia F. J. Origin and petrophysics of dolostone pore-space. Geological Society, London, Special Publications. 2004, vol. 235, no. 1, pp. 141—155. DOI: 10.1144/GSL.SP.2004.235.01.06.

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.