Analysis of displacements as function of drilling and blasting parameters and geological characteristics of rocks

The article analyzes displacements in rock mass and orebody during mass blasting in open pit mining in different geological conditions and at different drilling and blasting parameters. The analysis of displacements took into account the drilling and blasting designs, and the geological and geomechanical properties of rocks. The estimates of horizontal displacements in rock mass used the displacement data from different type markers. The dependences of horizontal displacements of rock mass on drilling and blasting parameters and geological characteristics of blasting blocks are presented. It is found that the displacement dependence on the drilling and blasting parameters is unpredictable and irregular, which makes it impossible to provide reliable prediction of displacements in rock mass only using the mentioned parameters. The geological–geomechanical block model of a mine revealed additional dependence of horizontal displacements on the density and joint characteristics of rock mass. The generalized results exhibit that rock mass displacements partly depend both on drilling and blasting parameters and on geological characteristics of rocks. The connection between rock mass displacements and the listed parameters is regularly traceable, which allows a hypothesis that it is highly probable to build a predictive model of displacements in rock mass and ore bodies using the integrated parameters and highly professional approaches.

Keywords: mineral mining, open pit mining, rocks, rock properties, geological block model, geomechanical parameters of rocks, ore body displacement, drilling and blasting parameters, blasting, marker.
For citation:

Nekrasov A. V., Cheskidov V. V., Nekrasova A. Y. Analysis of displacements as function of drilling and blasting parameters and geological characteristics of rocks. MIAB. Mining Inf. Anal. Bull. 2025;(1):80-99. [In Russ]. DOI: 10.25018/0236_1493_2025_1_0_80.

Acknowledgements:
Issue number: 1
Year: 2025
Page number: 80-99
ISBN: 0236-1493
UDK: 622.03, 622.235
DOI: 10.25018/0236_1493_2025_1_0_80
Article receipt date: 07.03.2024
Date of review receipt: 22.10.2024
Date of the editorial board′s decision on the article′s publishing: 10.12.2024
About authors:

A.V. Nekrasov1, Graduate Student, e-mail: m2311920@edu.misis.ru, ORCID ID: 0009-0007-9614-6440,
V.V. Cheskidov1, Cand. Sci. (Eng.), Assistant Professor, e-mail: vcheskidov@misis.ru, ORCID ID: 0000-0001-6165-5439, Scopus Author ID: 57197715574,
A.Y. Nekrasova1, Graduate Student, e-mail: m2400143@edu.misis.ru, ORCID ID: 0009-0003-5459-7316,
1 NUST MISIS, 119049, Moscow, Russia.

 

For contacts:

A.V. Nekrasov, e-mail: m2311920@edu.misis.ru.

Bibliography:

1. Camara T. R., Leal R. S., Peroni R. L., Capponi L. N. Controlling operational dilution in open-pit mining. Mining Technology. 2018, vol. 128, no. 4, pp. 1—8. DOI: 10.1080/25726668.2018.1470275.

2. Kala V., Kubat E., Jabalbarzai G. R., Nikkhah A., Saeedi G. R., Hakimi J., Tahernejad Javazm P. Modelling and determining the effective parameters in ore dilution in Sarcheshmeh copper mine. EFEE World Conference on Explosives and Blasting. Netherlands, Maastricht. 2022, pp. 50—60.

3. Zhi Y., Xiu-Zhi S., Zong-Xian Z., Yong-Gang G., Xiao-Hu M., Jin-Zhou T. Using a dividing open-pit blast (DOPB) method to reduce ore loss and dilution caused by blast-induced rock movement. Acta Geotechnica. 2023, vol. 18, pp. 4311—4327. DOI: 10.1007/s11440-023-01826-3.

4. La Rosa D., Julian L., Ruiseco J., Hunt T. Advances in blast movement modelling and its application to next generation grade control. 26th World Mining Congress (WMC 2023). Brisbane, Australia, pp. 2241—2253. https://www.orica.com/Products-Services/Digital-Solutions/orepro-3d.

5. Kovlekov I. I., Tarasov A. S. The method of contrast markers to improve the quality of the ore in case of bulk blasting. MIAB. Mining Inf. Anal. Bull. 2012, no. 11, pp. 401—404. [In Russ].

6. Khokhlov S. V., Vinogradov Yu. I., Noskov A. P., Bazhenova A. V. Predicting displacements of ore body boundaries in generation of blasted rock pile. MIAB. Mining Inf. Anal. Bull. 2023, no. 3, pp. 40—56. [In Russ]. DOI: 10.25018/0236_1493_2023_3_0_40.

7. Engmann E., Ako S., Bisiaux B., Rogers W., Kanchibotla S. Measurement and modelling of blast movement to reduce ore losses and dilution at Ahafo gold mine in Ghana. Ghana Mining Journal. 2013, pp. 27—36.

8. Khokhlov S. V., Rakhmanov R. A., Alenichev I. A., Bazhenova A. V., Makkoev V. A. Investigation of the management and control of blasted ore mass displacement. Explosion technology. 2021, no. 132, pp. 59—76. [In Russ].

9. Tetteh G. M. Blast induced ore movement prediction using rock strength parameters — A case study. Journal of Environment and Earth Science. 2016, vol. 6, no. 3, available at: www.iiste.org.

10. Poupeau B., Hunt W., La Rosa D. Blast induced ore movement: The missing step in achieving realistic reconciliations. https://www.orica.com/Products-Services/Digital-Solutions/orepro-3d.

11. Loeb J., Thornton D. A cost benefit analysis to explore the optimal number of blast movement monitoring locations. 9th International Mining Geology Conference. Adelaide, 2014, pp. 1—9.

12. Magohe S. P., Shoo N., Mapogha E., Kinabo C., Chambulikazi C. Monitoring rock movement and controlling ore loss and dilution associated with blasting at Geita and North Mara Gold mines, Tanzania. Mining Technology. 2022, vol. 131, no. 2, pp. 90—103. DOI: 10.1080/25726668.2022.2046684.

13. Julian L., Hunt W., La Rosa D., Ruiseco J. R. A novel innovation for reconciliation. International Mining Geology Conference 2022. Brisbane, Australia and Online, 2022. https://www.orica. com/Products-Services/Digital-Solutions/orepro-3d.

14. Rusakov A., Loeb D., Gambal M., Kosuhin N. Reduce ore loss and dilution: direct estimation or modeling of ore movement by blasting. Zoloto i tekhnologii. 2021, no. 2 (52). [In Russ].

15. Yu Z., Shi X., Miao X., Zhou J., Khandelwal M., Chen X., Qiu Y. Intelligent modeling of blast-induced rock movement prediction using dimensional analysis and optimized artificial neural network technique. International Journal of Rock Mechanics & Mining Sciences. 2021, vol. 143, no. 2, article 104794. DOI: 10.1016/j.ijrmms.2021.104794.

16. Gambal M. Yu., Ruchka A. S., Ismaylov M. A. New technologies in the service of the chief geologist to reduce losses and dilution by actually measuring the movement of ore bodies during blasting operations in the open pit. Experience of application at Pavlik Mine. Zoloto i tekhnologii. 2021, no. 3(53), pp. 114—121. [In Russ].

17. Kabelko S. G., Dunaev V. A., Yanitskii E. B., Rakhmanov R. A. Computer simulation of displacement of rock mass and estimation of ore dilution as a result of massive explosion in the open mining. Explosion technology. 2018, no. 120-77, pp. 94—108. [In Russ].

18. Kazakov N. N., etc. Droblenie gornykh porod vzryvom v kar'erakh: monografiya [Rock crushing by explosion in open pits: a monograph], Мoscow, RAN, 2020, 520 p.

19. Shevkun E. B., Leonenko N. A., Plotnikov A. Yu. Loosening blasting of rocks at extended delay intervals. MIAB. Mining Inf. Anal. Bull. 2021, no. 12-1, pp. 255—263. [In Russ]. DOI: 10.25018/023 6_1493_2021_121_0_255.

20. Eshun P. A., Dzigbordi K. A. Control of ore loss and dilution at anglogold ashanti, iduapriem mine using blast movement monitoring system. Ghana Mining Journal. 2016, vol. 16, no. 1, pp. 49—59.

21. Loeb J., Silveira M. Minimizing mining dilution, ore loss, and misclassification by accounting for blast movement in south american porphyry-skarn and manto copper mines. Proceedings Perumin 33rd Mining Convention. Peru: Instituto De Ingenieros De Minas Del Peru, 2017.

22. Ghaffari M., Panahi A. M. M., Hassani M. Control of iron ore extraction to reduce dilution in GoharZamin mine. Journal of Critical Reviews. 2020, vol. 7, no. 8, pp. 3604—3607.

23. Yu Z., Shi X-Z., Zhang Z-X., Gou Y-G., Miao X-H., Kalipi I. Numerical investigation of blast-induced rock movement characteristics in open-pit bench blasting using bonded-particle method.Rock Mechanics and Rock Engineering. 2022, vol. 55, pp. 3599—3619. DOI: 10.1007/s00603-022-02831-w.

24. Fu W., Furtney J., Valencia J. Blast movement simulation through a hybrid approach of continuum, discontinuum, and machine learning modeling. ARMA 23-831. 57th US Rock Mechanics. Geomechanics Symposium held in Atlanta, Georgia, USA, 2023.

25. Vasylchuk Y. V., Deutsch C. V. Approximate blast movement modelling for improved grade control. Mining Technology. 2019, vol. 128, no. 3, pp. 152—161. DOI: 10.1080/25726668.2019.1583843.

26. Vasylchuk Y. V., Deutsch C. V. Improved grade control in open pit mines. Mining Technology. 2018, vol. 127, no. 2, pp. 84—91. DOI: 10.1080/14749009.2017.1363991.

27. Koprev I., Garkov I., Kaykov D., Terziyski D. Studying blast induced rock movement in open-pit mining with small benches. 11th EFEE World Conference. Maastricht, Netherlands, 2022, pp. 191—204.

28. Etkin M. B., Azarkovich A. E. Vzryvnye raboty v energeticheskom i promyshlennom stroitel'stve: Nauchno-prakticheskoe rukovodstvo [Blasting works in power and industrial construction: Scientific-practical guidance], Мoscow, Izd-vo MGGU, 2004, 317 p.

29. Alenichev I. A., Rahmanov R. A. Empirical regularities investigation of rock mass discharge by explosion on the free surface of a pit bench. Journal of Mining Institute. 2021, vol. 249, pp. 334—341. [In Russ]. DOI: 10.31897/PMI.2021.3.2.

30. Martyanov V. L., Kolesnikov V. F., Lapaev M. N. Investigation of drilling and blasting works parameters for the combined technology of open pit mining of inclined deposits. Journal of Mining and Geotechnical Engineering. 2022, no. 3(18), pp. 53—78. [In Russ]. DOI: 10.26730/2618-7434-2022-3-53-78.

31. Menzhulin M. G., Moldovan D. V., Borisenko Yu. N., Legkova O. E. Model of the influence of natural fracturing and blockiness on explosive rock fracture. Journal of Mining Institute. 2007, vol. 172, pp. 43—47. [In Russ].

32. Yang Y., Ding X., Zhou W., Lu X., Ebelia M., An W., Li J., Zhang X. Open-pit mine geological model construction and composite rock blasting optimization research. Shock and Vibration. 2022, article 1468388. DOI: 10.1155/2022/1468388.

33. Deere D. U., Deere D. W. The rock quality designation (RQD) index in practice. Rock Classification System for Engineering Purposes, ASTM STP 984, American Society for Testing and Materials, Philadelphia, 1988, pp. 91—101.

34. Ohadi B., Esmaeili K., Mohanty B. Influence of rock mass properties on blast-induced rock movement. 44th Annual Conference on Explosives and Blasting Technique. San Antonio, USA, 2018.

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.