Aramid conveyor belts as an alternative of steel cord rubber belts

In design of mother conveyors, emphasis should be laid upon the choice of a belt type as its reliability governs both efficiency of the conveyor and consumed power of its drive. There exists a possibility to reduce the drive power input by means of decreasing the value of the friction factor between the belt and idlers, which is achieved by using a special energysaving belt, with its bottom coating made of special rubber. Another way is using a lighter weight belt having the required tensile strength according to the calculated pull of a conveyor. This is an aramid-framed belt which possesses the same physical and mechanical characteristics as steel cord rubber belts have. The physical and mechanical characteristics of the steel cord rubber and aramid conveyor belts are studied. It is found that with the aramid belts, it is possible to equip conveyors with drive, tail and bend pulleys of smaller diameters. The comparative calculations performed for the conveyors installed at Oleniy Ruchey GOK show that with replacement of the steel cord rubber belts for the aramid belts, the energy demand of the conveyors lowers and, consequently, the atmospheric emission of carbon dioxide drops due to less coal combustion at heating and power plants.

Keywords: conveyor, operation, steel cord rubber belt, aramid belt, bottom coating, physical and mechanical characteristics, pulleys, drive, energy consumption, carbon dioxide.
For citation:

Sazankova E. S., Berdyugin I. A. Aramid conveyor belts as an alternative of steel cord rubber belts. MIAB. Mining Inf. Anal. Bull. 2023;(12):111-122. [In Russ]. DOI: 10. 25018/0236_1493_2023_12_0_111.

Acknowledgements:
Issue number: 12
Year: 2023
Page number: 111-122
ISBN: 0236-1493
UDK: 622.647.2
DOI: 10.25018/0236_1493_2023_12_0_111
Article receipt date: 17.02.2023
Date of review receipt: 23.08.2023
Date of the editorial board′s decision on the article′s publishing: 10.11.2023
About authors:

E.S. Sazankova1, Cand. Sci. (Eng.), Assistant Professor, e-mail: sazankova@yandex.ru, ORCID ID: 0000-0001-5322-3003,
I.A. Berdyugin1, Graduate Student, e-mail: anberd@mail.ru, ORCID ID: 0000-0001-8346-0640,
1 Mining Institute, National University of Science and Technology «MISiS», 119049, Moscow, Russia.

 

For contacts:

E.S. Sazankova, e-mail: sazankova@yandex.ru.

Bibliography:

1. Galkin V. I., Sazankova E. S. Features of operation of powerful belt conveyors with a curved route for the mining industry. MIAB. Mining Inf. Anal. Bull. 2011, no. 6, pp. 187—190. [In Russ].

2. Perekutnev V. E., Zotov V. V. Comparative assessment of rubber steel cables for vertical mine hoists. MIAB. Mining Inf. Anal. Bull. 2020, no. 7, pp. 85—93. [In Russ]. DOI: 10.25018/ 0236-1493-2020-7-0-85-93.

3. Yurchenko V. M. Center adjustment of conveyor belts. MIAB. Mining Inf. Anal. Bull. 2019, no. 2, pp. 156—162. [In Russ]. DOI: 10.25018/0236-1493-2019-02-0-156-162.

4. Sukhorukova M. A., Ivannikov A. L. Vehicle accident risk assessment in mines. MIAB. Mining Inf. Anal. Bull. 2020, no. 6-1, pp. 224—232. [In Russ]. DOI: 10.25018/0236-14932020-61-0-224-232.

5. Kaung P. A., Solovykh D. Y., Nagorniy D. A., Adigamov D. A. Modelling of belt conveyor movement considering the inclination angle and tension of the ropes of the load bearing structure. Sustainable Development of Mountain Territories. 2022, vol. 14, no. 4, pp. 603—614. [In Russ]. DOI: 10.21177/1998-4502-2022-14-4-603-614.

6. Galkin V. I., Sheshko E. E., Dyachenko V. P., Sazankova E. S. The main directions of increasing the operational efficiency of high productive belt conveyors in the mining industry. Eurasian Mining. 2021, no. 2, pp. 64—68. DOI: 10.17580/em.2021.02.14.

7. Perepelkin K. E. History and chronology of development of chemical fibers. Role of scientists and engineers in St. Petersburg. Vestnik of St. Petersburg State University of Technology and Design. 2003, no. 8, pp. 3—9. [In Russ].

8. Doriomedov M. S. Aramid fiber market: types, properties, application. Proceedings of VIAM. 2020, no. 11(93). C. 48—59. [In Russ]. DOI: 10.18577/2307-6046-2020-0-11-48-59.

9. Kulagina G. S., Zhelezina G. F., Tikhonov I. V., Doriomedov M. S. Aramid organoplastics, state and prospects. Polimernye kompozitsionnye materialy i proizvodstvennye tekhnologii novogo pokoleniya: Materialy II Vserossiyskoy nauchno-tekhnicheskoy konferentsii [Polymer composite materials and New Generation Production technologies: Materials of the II All-Russian Scientific and Technical Conference], Moscow, VIAM, 2017, pp. 79—91. [In Russ].

10. Van de Ven H., Beers H., Lodewijks G., Drenkelford S. Aramid in conveyor belts for extended lifetime, energy saving and environmental effects. Bulk Solids Handling. 2016, vol. 36, no. 6, pp. 16—21.

11. Bajda M., Hardygóra M. Analysis of the influence of the type of belt on the energy consumption of transport processes in a belt conveyor. Energies. 2021, vol. 14, no. 19, pp. 61—80, article 6180. DOI: 10.3390/en14196180.

12. Zang S., Tang Y. Optimal scheduling of belt conveyor systems for energy efficiency— With application in a coal-fired power plant. Proceedings of the Chinese Control and Decision Conference (CCDC), Mianyang, China, 2011, pp. 1434—1439.

13. Sazankova E. S. Physical and mechanical properties of synthetic used in the manufacture of cord fabric for textile belts. MIAB. Mining Inf. Anal. Bull. 2015, no. 6, pp. 385—395. [In Russ].

14. Galkin V. I., Sheshko E. E., Sazankova E. S. Influence of types and characteristics of belts on the operational parameters of special belt conveyors. Gornyi Zhurnal. 2015, no. 8, pp. 88. [In Russ]. DOI: 10.17580/gzh.2015.08.18.

15. Malakhov V. A., Tropako A. V., Dyachenko V. P. Rolling resistance coefficient of belt conveyor rollers as function of operating conditions in mines. Eurasian Mining. 2022, no. 1, pp. 67—71. DOI: 10.17580/em.2022.01.14.

16. Drenkelford S. Energy-saving potential of Aramid-based conveyor belts. Master of Science Thesis. 2015, pp. 114—122.

17. Gładysiewicz L., Konieczna-Fuławka M. Influence of idler set load distribution on belt rolling resistance. Archives of Mining Science. 2019, vol. 64, no. 2, pp. 251—259. DOI: 10.24425/ ams.2019.128681.

18. Küsel B. New energy-saving conveyor belts being standardized. Coal & Minerals Asia. 2012, vol. 25, pp. 102—103.

19. He D. Energy saving for belt conveyors by speed control. TRAIL Research School, 2017. DOI: 10.4233/uuid:a315301e6120-48b2-a07b-cabf81ab3279.

20. Lodewijks G. The next generation low loss conveyor belts. Bulk Solids Handling. 2012, vol. 32, no. 1, pp. 52—56.

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.