Aspects of waste recycling problems in chrysotile asbestos industry

In this article, research has been conducted using a patent-analytical review of various technologies in the field of serpentinite application and recycling of chrysotile asbestos industry waste. In particular, the scientific literature describes the prospects for new applications of serpentinites and waste from the chrysotile asbestos industry in agriculture, ceramics, catalysis, electrochemistry, as well as as an adsorbent, an additive in polymers, and a mineral for carbon dioxide capture is considered. A number of methods and technologies of using and processing serpentinites and waste from the chrysotile asbestos industry in different years by various scientific teams are considered. The analysis reveals the advantages and disadvantages of the scientific achievements available today for the use and processing of serpentinites and man-made waste from the chrysotile asbestos industry. Based on the review, the technoeconomic and environmental aspects of the problems connected with recycling of chrysotile asbestos industry waste through acid processing are presented and analyzed. The solution of these problems can open up new opportunities in diversifying production at chrysotile mining companies of the Commonwealth of Independent States (CIS), and primarily in such countries as the Russian Federation and the Republic of Kazakhstan. Based on the results of the research, a conclusion is formulated on the search for technological solutions for the use and recycling of serpentinites and waste from the chrysotile asbestos industry through their integrated processing as secondary mineral raw materials.

Keywords: serpentinite, chrysotile asbestos industry waste, acidic methods, recycling, environment, waste disposal, environmental situation, integrated recycling
For citation:

Abdrazakh Auyeshov, Chaizada Eskibayeva, Kazhmukhan Arynov, Alexandr Kolesnikov Aspects of waste recycling problems in chrysotile asbestos industry. MIAB. Mining Inf. Anal. Bull. 2024;(9):88-98. DOI: 10.25018/0236_1493_2024_9_0_88.

Acknowledgements:

The article was supported by the Science Committee of the Ministry of Science and Higher in the framework of Education of the Republic of Kazakhstan prepared with the financial support of grant financing of program-targeted financing of scientific and (or) scientific and technical projects and programs for 2023¬2025, Grant No. BR21882242.

Issue number: 9
Year: 2024
Page number: 88-98
ISBN: 0236-1493
UDK: 628.511
DOI: 10.25018/0236_1493_2024_9_0_88
Article receipt date: 26.04.2024
Date of review receipt: 29.05.2024
Date of the editorial board′s decision on the article′s publishing: 10.08.2024
About authors:

Abdrazakh Auyeshov1, Dr. Sci. (Eng.), Professor, e-mail: centersapa@mail.ru, ORCID ID: 0000-0002-3504-9117,
Chaizada Eskibayeva1, Cand. Sci. (Eng.), Associate Professor, e-mail: yeskibayeva@internet.ru, ORCID ID: 0000-0002-8049-8851,
Kazhmukhan Arynov, Dr. Sci. (Eng.), Professor, «Aspan Tau LTD» LLP, 160024, Almaty, Kazakhstan, e-mail: tau_aspan@mail.ru, ORCID ID: 0000-0002-1440-8248,
Alexandr Kolesnikov1, Cand. Sci. (Eng.), Professor, e-mail: kas164@yandex.kz, ORCID ID: 0000-0002-8060-6234,
1 M. Auyezov South Kazakhstan University, 160012, Shymkent, Kazakhstan.

 

For contacts:

A.P. Auyeshov, e-mail: centersapa@mail.ru; kas164@yandex.kz.

Bibliography:

1. Cavallo A. Serpentinitic waste materials from the dimension stone industry: Characterization, possible reuses and critical issues. Resource Policy. 2018, vol. 59, pp. 17—23. DOI: 10.1016/j.resourpol.2018.08.003.

2. Donaev A., Shapalov Sh., Sarapagalieva B., Ivahnuk G. Studies of waste from the mining and metallurgical industry, with the determination of its impact on the life of the population. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences. 2022. no. 4, pp. 55—68.

3. Klyuev A. V., Kashapov N. F., Klyuev S. V., Zolotareva S. V., Shchekina N. A., Shorstova E. S., Lesovik R. V., Ayubov N. A. Experimental studies of the processes of structure formation of composite mixtures with technogenic mechanoactivated silica component. Construction Materials and Products. 2023, vol. 6, no. 2, pp. 5—18. [In Russ]. DOI: 10.58224/2618-7183-2023-6-2-5-18.

4. Jumasheva K., Syrlybekkyzy S., Serikbayeva A., Bessimbayeva Z., Uisimbayeva Z. World experience in the use of excess sewage sludge. Acta Innovations. 2023, vol. 50, pp. 18—28. DOI: 10.32933/ActaInnovations.50.2.

5. Aueshov A. P., Satimbekova A. B., Arynov K. T., Dikanbaeva A. K., Bekaulova A. A. Environmental and technological aspects of acid treatment of serpentinite waste from chrysotile asbestos mining and processing. International Journal of Engineering Research and Technology. 2020, vol. 13, no. 6, pp. 1215—1219.

6. Kulikova E. Yu., Balovtsev S. V., Skopintseva O. V. Comprehensive assessment of geoecological risks in conducting open and underground mining. Sustainable Development of Mountain Territories. 2024, vol. 16, no. 1, pp. 205—216. [In Russ]. DOI: 10.21177/1998-4502-2024-16-1-205-216.

7. Kolesnikov A. S. Thermodynamic simulation of silicon and iron reduction and zinc and lead distillation in zincoligonite ore-carbon systems. Russian Journal of Non-Ferrous Metals. 2014, vol. 55, no. 6, pp. 513—518. DOI: 10.3103/S1067821214060121.

8. Błońska E., Januszek K., Małek S., Wanic T. Effects of serpentinite fertilizer on the chemical properties and enzyme activity of young spruce soils. International Agrophysics. 2016, vol. 30, no. 4, pp. 401—414. DOI: 10.1515/intag-2016-0015.

9. Błońska E., Pająk M., Małek S., Januszek K. Effects of serpentinite fertilization with N, P, K fertilizers on soil properties and needle chemistry. Communications in Soil Science and Plant Analysis. 2017, vol. 48, no. 6, pp. 692—704. DOI: 10.1080/00103624.2017.1298785.

10. Ranawat P., Kumar K. M., Sharma N. K.A process for making slow-releasephosphate fertilizer from low-grade rock phosphate and siliceous tailings by fusion with serpentinite. Research Communications Current Science. 2009, vol. 96, no. 6, pp. 843—848.

11. Pollastri S., Gualtieri A. F., Gualtieri M. L., Hanuskova M., Cavallo A., Gaudino G. The zeta potential of mineral fibres. Journal of Hazardous Materials. 2014, vol. 276, no. 15, pp. 469—479. DOI: 10.1016/j.jhazmat.2014.05.060.

12. Cao C.-Y. Y., Liang C.-H. H., Yin Y., Du L.-Y. Y. Thermal activation of serpentine for adsorption of cadmium. Journal of Hazardous Materials. 2017, vol. 329, pp. 222—229. DOI: 10.1016/j. jhazmat.2017.01.042

13. Shaban M., Abukhadra M. R., Khan A. A. P., Jibali B. M. Removal of Congo red, methylene blue and Cr (VI) ions from water using natural serpentine. Journal of the Taiwan Institute of Chemical Engineers. 2018, vol. 82, p. 102. DOI: 10.1016/j.jtice.2017.10.023.

14. Mpouras T., Chrysochoou M., Dermatas D. Investigation of hexavalent chromium sorption in serpentine sediments. Journal of Contaminant Hydrology. 2017, vol. 197, p. 29. DOI: 10.1016/j. jconhyd.2016.12.009.

15. Huang P., Li Z., Chen M., Hu H., Lei Z., Zhang Q., Yuan W. Mechanochemical activation of serpentine for recovering Cu (II) from wastewater. Applied Clay Science. 2017, vol. 149. DOI: 10.1016/j.clay.2017.08.030.

16. Momcilovic M. Z., Randelovic M. S., Purenovic M. M., Dordevic J. S., Onjia A., Matovic B. Morpho-structural, adsorption and electrochemical characteristics of serpentinite. Separation and Purification Technology. 2016, vol. 163, no. 11, pp. 72—78.

17. Randelovic M. S., Momcilovic M. Z., Nikolic G., Dordevic J. S. Electrocatalitic behaviour of serpentinite modified carbon paste electrode. Journal of Electroanalytical Chemistry. 2017, vol. 801, pp. 338—344. DOI: 10.1016/j.jelechem.2017.08.011.

18. Ferrufino G. L. A. A., Okamoto S., dos Santos J. C., de Carvalho J. A., Avila I., Luna C. M. R., Neto T. G. S. CO2 sequestration by pH-swing mineral carbonation based on HCl/NH4OH system using ironrich lizardite. Journal of CO2 Utilization. 2018, vol. 24, pp. 164—173. DOI:10.1016/j.jcou.2018.01.001.

19. Arce G. L. A. F., Neto T. G. S., Ávila I., Luna C. M. R., dos Santos J. C., Carvalho J. A. Influence of physicochemical properties of Brazilian serpentinites on theleaching process for indirect CO2 mineral carbonation. Hydrometallurgy. 2017, vol. 169, pp. 142—151. DOI: 10.1016/j.hydromet.2017.01.003.

20. Werner M., Hariharan S., Mazzotti M. Flue gas CO2 mineralization using thermally activated serpentine: from singleto double-step carbonation. Energy Procedia. 2014, vol. 63, pp. 5912—5917. DOI: 10.1016/j.egypro.2014.11.626.

21. Pasquier L.-C., Mercier G., Blais J.-F., Cecchi E., Kentish S. Reaction mechanism for the aqueous-phase mineral carbonation of heat-activated serpentine at low temperatures and pressures in flue gas conditions. Environmental Science & Technology. 2014, vol. 48, no. 9, pp. 5163—5170. DOI: 10.1021/es405449v.

22. Farhang F., Oliver T. K., Rayson M., Brent G., Stockenhuber M., Kennedy E. Experimental study on the precipitation of magnesite from thermally activated serpentine for CO2 sequestration. Chemical Engineering Journal. 2016, vol. 303, pp. 439—449. DOI: 10.1016/j.cej.2016.06.008.

23. Lemos B. R. S., Soares A. R., Teixeira A. P. C., Ardisson J. D., Fernandez-Outon L. E., Amorim C. C., Lago R. M., Moura F. C. C. Growth of carbon structures on chrysotile surface for organic contaminants removal from wastewater. Chemosphere. 2016, vol. 159, pp. 602—609. DOI: 10.1016/j. chemosphere.2016.06.022.

24. Kalichenko I. I., Gabdullin A. N. Patent RU 2292300, MPK C01F5/02. 27.01.2007. [In Russ].

25. Sagarunyan S. A., Arustamyan A. G., Agamyan E. S., Arakelyan A. M., Sagarunyan A. S. Patent 2953 A Republic of Armenia, MPK S 01 V33/00, S 09 S1/00. 2014.

26. Penskiy A. V., Shundikov N. A., Gladikova L. A. Patent RU 2244044, MPK7 C 25 C3/04. 10.01.2005 [In Russ].

27. Kozlov V. A., Baygenzhenov O. S., Zhusupov K. K., Shevelev V. V. Patent 29779 Republic of Kazakhstan. 15.04.2015.

28. Gabdullin A. N., Kalinichenko I. I., Pecherskikh E. G., Semenishchev V. S. Waste-free nitric acid processing of serpentinite – waste from the asbestos-processing industry. II Mezhdunarodnaya nauchnoprakticheskaya konferentsiya «Sovremennye resursosberegayushchie tekhnologii: problemy i perspektivy». Sbornik dokladov [II International Scientific and Practical Conference «Modern resource-saving technologies: problems and prospects». Collection of reports], Odessa, 2012, pp. 50—52. [In Russ].

29. Velinskiy V. V., Gusev G. M. Patent RU 2038301, MPK6 C 01 F5/06. 27.06.1995. [In Russ].

30. Grigorovich M. M., Mel'nik L. I., Kuz'mina R. M. Patent RU 2285666, MPK C 01 F 5/06, C 01 B 33/142. 20.10.2006. [In Russ].

31. Yoo K., Kim B. S., Kim M. S., Lee J. C., Jeong J. Dissolution of magnesium from serpentine mineral in sulfuric acid solution. Materials Transactions. 2009, vol. 50, no. 5, pp. 1225—1230. DOI: 10.2320/matertrans.M2009019.

32. Gladikova L., Teterin V., Freidlina R. Production of magnesium oxide from solutions formed by acid processing of serpentinite. Russian Journal of Applied Chemistry. 2008, vol. 81, no. 5, pp. 889— 891. [In Russ].

33. Fedoročková A., Hreus M., Raschman P., Sučik G. Dissolution of magnesium from calcined serpentinite in hydrochloric acid. Minerals Engineering. 2012, vol. 32, no. 1. DOI: 10.1016/j. mineng.2012.03.006.

34. Nduagu E., Björklöf T., Fagerlund J., Mäkilä E., Salonen J., Geerlings H., Zevenhoven R. Production of magnesium hydroxide from magnesium silicate for the purpose of CO2 mineralization. Part 2: Mg extraction modeling and application to different Mg silicate rocks. Minerals Engineering. 2012, vol. 30, pp. 87—94. DOI: 10.1016/j.mineng.2011.12.002.

35. Taubert L. Hydrochloric attack of serpentinites: Mg2+ leaching from serpentinites. Magnesium Research. 2000, vol. 13, no. 3, pp. 167—173.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.