Bibliography: 1. Cavallo A. Serpentinitic waste materials from the dimension stone industry: Characterization, possible reuses and critical issues. Resource Policy. 2018, vol. 59, pp. 17—23. DOI: 10.1016/j.resourpol.2018.08.003.
2. Donaev A., Shapalov Sh., Sarapagalieva B., Ivahnuk G. Studies of waste from the mining and metallurgical industry, with the determination of its impact on the life of the population. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences. 2022. no. 4, pp. 55—68.
3. Klyuev A. V., Kashapov N. F., Klyuev S. V., Zolotareva S. V., Shchekina N. A., Shorstova E. S., Lesovik R. V., Ayubov N. A. Experimental studies of the processes of structure formation of composite mixtures with technogenic mechanoactivated silica component. Construction Materials and Products. 2023, vol. 6, no. 2, pp. 5—18. [In Russ]. DOI: 10.58224/2618-7183-2023-6-2-5-18.
4. Jumasheva K., Syrlybekkyzy S., Serikbayeva A., Bessimbayeva Z., Uisimbayeva Z. World experience in the use of excess sewage sludge. Acta Innovations. 2023, vol. 50, pp. 18—28. DOI: 10.32933/ActaInnovations.50.2.
5. Aueshov A. P., Satimbekova A. B., Arynov K. T., Dikanbaeva A. K., Bekaulova A. A. Environmental and technological aspects of acid treatment of serpentinite waste from chrysotile asbestos mining and processing. International Journal of Engineering Research and Technology. 2020, vol. 13, no. 6, pp. 1215—1219.
6. Kulikova E. Yu., Balovtsev S. V., Skopintseva O. V. Comprehensive assessment of geoecological risks in conducting open and underground mining. Sustainable Development of Mountain Territories. 2024, vol. 16, no. 1, pp. 205—216. [In Russ]. DOI: 10.21177/1998-4502-2024-16-1-205-216.
7. Kolesnikov A. S. Thermodynamic simulation of silicon and iron reduction and zinc and lead distillation in zincoligonite ore-carbon systems. Russian Journal of Non-Ferrous Metals. 2014, vol. 55, no. 6, pp. 513—518. DOI: 10.3103/S1067821214060121.
8. Błońska E., Januszek K., Małek S., Wanic T. Effects of serpentinite fertilizer on the chemical properties and enzyme activity of young spruce soils. International Agrophysics. 2016, vol. 30, no. 4, pp. 401—414. DOI: 10.1515/intag-2016-0015.
9. Błońska E., Pająk M., Małek S., Januszek K. Effects of serpentinite fertilization with N, P, K fertilizers on soil properties and needle chemistry. Communications in Soil Science and Plant Analysis. 2017, vol. 48, no. 6, pp. 692—704. DOI: 10.1080/00103624.2017.1298785.
10. Ranawat P., Kumar K. M., Sharma N. K.A process for making slow-releasephosphate fertilizer from low-grade rock phosphate and siliceous tailings by fusion with serpentinite. Research Communications Current Science. 2009, vol. 96, no. 6, pp. 843—848.
11. Pollastri S., Gualtieri A. F., Gualtieri M. L., Hanuskova M., Cavallo A., Gaudino G. The zeta potential of mineral fibres. Journal of Hazardous Materials. 2014, vol. 276, no. 15, pp. 469—479. DOI: 10.1016/j.jhazmat.2014.05.060.
12. Cao C.-Y. Y., Liang C.-H. H., Yin Y., Du L.-Y. Y. Thermal activation of serpentine for adsorption of cadmium. Journal of Hazardous Materials. 2017, vol. 329, pp. 222—229. DOI: 10.1016/j. jhazmat.2017.01.042
13. Shaban M., Abukhadra M. R., Khan A. A. P., Jibali B. M. Removal of Congo red, methylene blue and Cr (VI) ions from water using natural serpentine. Journal of the Taiwan Institute of Chemical Engineers. 2018, vol. 82, p. 102. DOI: 10.1016/j.jtice.2017.10.023.
14. Mpouras T., Chrysochoou M., Dermatas D. Investigation of hexavalent chromium sorption in serpentine sediments. Journal of Contaminant Hydrology. 2017, vol. 197, p. 29. DOI: 10.1016/j. jconhyd.2016.12.009.
15. Huang P., Li Z., Chen M., Hu H., Lei Z., Zhang Q., Yuan W. Mechanochemical activation of serpentine for recovering Cu (II) from wastewater. Applied Clay Science. 2017, vol. 149. DOI: 10.1016/j.clay.2017.08.030.
16. Momcilovic M. Z., Randelovic M. S., Purenovic M. M., Dordevic J. S., Onjia A., Matovic B. Morpho-structural, adsorption and electrochemical characteristics of serpentinite. Separation and Purification Technology. 2016, vol. 163, no. 11, pp. 72—78.
17. Randelovic M. S., Momcilovic M. Z., Nikolic G., Dordevic J. S. Electrocatalitic behaviour of serpentinite modified carbon paste electrode. Journal of Electroanalytical Chemistry. 2017, vol. 801, pp. 338—344. DOI: 10.1016/j.jelechem.2017.08.011.
18. Ferrufino G. L. A. A., Okamoto S., dos Santos J. C., de Carvalho J. A., Avila I., Luna C. M. R., Neto T. G. S. CO2 sequestration by pH-swing mineral carbonation based on HCl/NH4OH system using ironrich lizardite. Journal of CO2 Utilization. 2018, vol. 24, pp. 164—173. DOI:10.1016/j.jcou.2018.01.001.
19. Arce G. L. A. F., Neto T. G. S., Ávila I., Luna C. M. R., dos Santos J. C., Carvalho J. A. Influence of physicochemical properties of Brazilian serpentinites on theleaching process for indirect CO2 mineral carbonation. Hydrometallurgy. 2017, vol. 169, pp. 142—151. DOI: 10.1016/j.hydromet.2017.01.003.
20. Werner M., Hariharan S., Mazzotti M. Flue gas CO2 mineralization using thermally activated serpentine: from singleto double-step carbonation. Energy Procedia. 2014, vol. 63, pp. 5912—5917. DOI: 10.1016/j.egypro.2014.11.626.
21. Pasquier L.-C., Mercier G., Blais J.-F., Cecchi E., Kentish S. Reaction mechanism for the aqueous-phase mineral carbonation of heat-activated serpentine at low temperatures and pressures in flue gas conditions. Environmental Science & Technology. 2014, vol. 48, no. 9, pp. 5163—5170. DOI: 10.1021/es405449v.
22. Farhang F., Oliver T. K., Rayson M., Brent G., Stockenhuber M., Kennedy E. Experimental study on the precipitation of magnesite from thermally activated serpentine for CO2 sequestration. Chemical Engineering Journal. 2016, vol. 303, pp. 439—449. DOI: 10.1016/j.cej.2016.06.008.
23. Lemos B. R. S., Soares A. R., Teixeira A. P. C., Ardisson J. D., Fernandez-Outon L. E., Amorim C. C., Lago R. M., Moura F. C. C. Growth of carbon structures on chrysotile surface for organic contaminants removal from wastewater. Chemosphere. 2016, vol. 159, pp. 602—609. DOI: 10.1016/j. chemosphere.2016.06.022.
24. Kalichenko I. I., Gabdullin A. N. Patent RU 2292300, MPK C01F5/02. 27.01.2007. [In Russ].
25. Sagarunyan S. A., Arustamyan A. G., Agamyan E. S., Arakelyan A. M., Sagarunyan A. S. Patent 2953 A Republic of Armenia, MPK S 01 V33/00, S 09 S1/00. 2014.
26. Penskiy A. V., Shundikov N. A., Gladikova L. A. Patent RU 2244044, MPK7 C 25 C3/04. 10.01.2005 [In Russ].
27. Kozlov V. A., Baygenzhenov O. S., Zhusupov K. K., Shevelev V. V. Patent 29779 Republic of Kazakhstan. 15.04.2015.
28. Gabdullin A. N., Kalinichenko I. I., Pecherskikh E. G., Semenishchev V. S. Waste-free nitric acid processing of serpentinite – waste from the asbestos-processing industry. II Mezhdunarodnaya nauchnoprakticheskaya konferentsiya «Sovremennye resursosberegayushchie tekhnologii: problemy i perspektivy». Sbornik dokladov [II International Scientific and Practical Conference «Modern resource-saving technologies: problems and prospects». Collection of reports], Odessa, 2012, pp. 50—52. [In Russ].
29. Velinskiy V. V., Gusev G. M. Patent RU 2038301, MPK6 C 01 F5/06. 27.06.1995. [In Russ].
30. Grigorovich M. M., Mel'nik L. I., Kuz'mina R. M. Patent RU 2285666, MPK C 01 F 5/06, C 01 B 33/142. 20.10.2006. [In Russ].
31. Yoo K., Kim B. S., Kim M. S., Lee J. C., Jeong J. Dissolution of magnesium from serpentine mineral in sulfuric acid solution. Materials Transactions. 2009, vol. 50, no. 5, pp. 1225—1230. DOI: 10.2320/matertrans.M2009019.
32. Gladikova L., Teterin V., Freidlina R. Production of magnesium oxide from solutions formed by acid processing of serpentinite. Russian Journal of Applied Chemistry. 2008, vol. 81, no. 5, pp. 889— 891. [In Russ].
33. Fedoročková A., Hreus M., Raschman P., Sučik G. Dissolution of magnesium from calcined serpentinite in hydrochloric acid. Minerals Engineering. 2012, vol. 32, no. 1. DOI: 10.1016/j. mineng.2012.03.006.
34. Nduagu E., Björklöf T., Fagerlund J., Mäkilä E., Salonen J., Geerlings H., Zevenhoven R. Production of magnesium hydroxide from magnesium silicate for the purpose of CO2 mineralization. Part 2: Mg extraction modeling and application to different Mg silicate rocks. Minerals Engineering. 2012, vol. 30, pp. 87—94. DOI: 10.1016/j.mineng.2011.12.002.
35. Taubert L. Hydrochloric attack of serpentinites: Mg2+ leaching from serpentinites. Magnesium Research. 2000, vol. 13, no. 3, pp. 167—173.