Automation of data acquisition from a one-way Triaxial Permeameter using Arduino sensors

The determination and interpretation of hydraulic conductivity is an intricate process in porous medium. Accurate measurement of hydraulic conductivity requires laboratory testing, monitoring and prediction. This study focuses on the fabrication of a one-way triaxial permeameter with a flexible wall for continuous permeability monitoring and hydraulic conductivity prediction using machine learning. The fabricated apparatus is equipped with real-time Arduino sensors to record humidity, backpressure, the mass of effluent water, room temperature and effluent water temperature. In the electrical circuit design, the capacitor and inductor were taken from a damaged electronic apparatus and used to buffer noise when the voltage in the circuit fluctuates. An artificial neural network model in R was used to predict the mass of the static load of 50g, the dynamic load of seeped water, and the coefficient of permeability. The standard deviation of the applied static load over 24 hours by regression analysis from day one to day five were 1.08, 1.99, 1.68, 0.99 and 0.75, respectively. The combined 5-day data showed a variance of 4.4, a standard deviation of 2.1, and a mean mass value of 49.93g. The predicted coefficient of hydraulic conductivity of the investigated samples of copper tailing cement slurry cured for 31 days comprised of 25% cement dosage was 1.73e-9 m/s with a high coefficient of determination R=0.97. The use of real-time sensing and machine learning can help accurately determine hydraulic conductivity.

Keywords: Arduino sensors; Arduino Uno; flexible wall triaxial permeameter; microcontroller; coefficient of hydraulic conductivity; machine learning.
For citation:

Fisonga M., Deng Y., Wang F., Chikutwe Chanda E. K., Mutambo V., Bunda B., Korir E., Bwalya D., Liyungu J., Chipola P. Automation of data acquisition from a one-way Triaxial Permeameter using Arduino sensors. MIAB. Mining Inf. Anal. Bull. 2022;(10-2):5—23. [In Russ]. DOI: 10.25018/0236_1493_2022_102_0_5.

Acknowledgements:
Issue number: 10
Year: 2022
Page number: 5-23
ISBN: 0236-1493
UDK: 622
DOI: 10.25018/0236_1493_2022_102_0_5
Article receipt date: 20.03.2022
Date of review receipt: 15.07.2022
Date of the editorial board′s decision on the article′s publishing: 10.09.2022
About authors:

Fisonga M.1,2, PhD Student at Southeast University and Lecturer at the University of Zambia, e-mail: fieldmarsheal@gmail.com, ORCID ID: 0000-0002-6261-4126;
Deng Y.1, Professor, Deputy Director of Underground Engineering, Department, e-mail: noden@seu.edu.cn, ORCID ID: 0000-0002-8223-8711;
Wang F.1, Professor, e-mail: feiwang@seu.edu.cn, ORCID ID:0000-0001-7844-5008;
Chikutwe Chanda E. K.2, Professor, Head of Mining Department, e-mail: emmanuel.chanda@unza.zm, ORCID ID:0000-0002-2102-9342;
Mutambo V.2, Senior Lecturer, e-mail: vmutambo@unza.zm, ORCID ID: 0000-0003-4394-7192;
Bunda B.2, Senior Lecturer, Dean School of Mines, e-mail: bbesa@unza.zm, ORCID ID: 0000-0001-9133-592X,
Korir E.3, Manager, e-mail: ekorir@belgraviaservices.com;
Bwalya D.4, Researcher, e-mail: danny.bwalya@energiasimples.pt;
Liyungu J.5, Lecturer, e-mail: jliyungu84@gmail.com;
Chipola P.6, Mining Dispatcher, e-mail: chipolapatrick28@gmail.com;
1 Institute of Geotechnical Engineering, School of Transport Engineering, Southeast University, Nanjing, China;
2 School of Mines, University of Zambia, Great East Road Campus, PO Box 32379, Lusaka, Zambia;
3 Belgravia Services Limited;
4 R&D Dept Simples Energia Lda Rua Aleixo da mota 86, R/C 4150−044 Porto, Portugal;
5 School of Engineering, University of Zambia, Great East Road Campus, P. O. Box 32379, Lusaka, Zambia;
6 FQM Trident limited, Kalumbila, Northwestern, Zambia.

 

For contacts:
Bibliography:

1. Ryan, C. R., Day, S. R. (2002). Soil-cement-bentonite slurry walls. Deep Foundations 2002: An International Perspective on Theory, Design, Construction, and Performance, 116, 713−727.

2. Reid, R. A. (1987). Triaxial Permeability Device. Atlanta: Georgia Institute of Technology.

3. Joshaghani, M., Ghasemi-Fare, O., Ghavami, M. (2018). Experimental investigation on the effects of temperature on physical properties of sandy soils. IFCEE 2018: Installation, Testing, and Analysis of Deep Foundations, 294, 675−685.

4. Ye, W.-M., Wan, M., Chen, B., et al. (2012). Temperature effects on the unsaturated permeability of the densely compacted GMZ01 bentonite under confined conditions. Engineering Geology, 126, 1−7.

5. Head, K. H., Epps, R. J. (2011). Manual of Soil Laboratory Testing. Vol. II. Dunbeath: Whittles Publishing.

6. Siemens, G., Blatz, J. (2007). Development of a hydraulic conductivity apparatus for bentonite soils. Canadian Geotechnical Journal, 44, 997−1005.

7. A dozen ways to measure fluid level. ABB. URL: https://new.abb.com/products/ measurement-products/level/a-dozen-ways-to-measure-fluid-level (Access date: 10.02.2022).

8. Wang, S. W., Chen, C. C., Wu, C. M., et al. (2018). A continuous water-level sensor based on the load cell and floating pipe. IEEE International Conference on Applied System Invention (ICASI), 151−154.

9. Buyong L. United States Patent. 19 (2000).

10. Aravind, R., Kumar, A., Harisudhan, K., et al. (2018). Load Cell-based Fuel Level Measurement using Arduino Uno Microcontroller. International Journal of Advance Research and Development, 3(3), 159−164.

11. Mitchell, R. A.,Baker, S. M. (1978). Characterizing the creep response of load Cells. VDI-Berichte, 312, 43−48.

12. Mohamed, M., Hasan, E., Aggag, G. (2009). Study of the creep behavior of load cells. Measurement, 42(7), 1006−1010.

13. Kopczynski, T., Ness, D. (2001). Five factors that can affect your weighing system’s accuracy. Powder and bulk engineering, 15, 31−37.

14. Head, K. H. (1998). Manual of Soil Laboratory Testing. Vol. 3. New York: John Wiley & Sons, Inc.

15. Ciaburro, G., Venkateswaran, B. (2017). Neural network with R. Birmingham: Packt Publishing.

16. ASTM-C511−13. Standard Specification for Mixing Rooms, Moist Cabinets, Moist Rooms, and Water. (2015). 23−25.

17. Evans, J., Mclane, M., Conners, S., et al. Development and Calibration of a Lab size Slump Cone. Geo-solutions. URL: https://www.geo-solutions.com/resources/calibrationslump-cone/ (Access date: 25.04.2020).

18. Malusis, M. A., Evans, J. C., Mclane, M. H., et al. (2008). A Miniature Cone for Measuring the Slump of Soil-Bentonite Cutoff Wall Backfill. Geotechnical Testing Journal, 31(5), 373−380.

19. ASTM-D5084−16a. Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter 1. (2016). 10−11.

20. Dafalla, M., Shaker, A., Elkady, T., et al. (2015). Effects of confining pressure and effective stress on hydraulic conductivity of sand-clay mixtures. Arabian Journal of Geosciences, 8, 9993−10001.

21. Luiz T., Morandini C., Leite L. (2015). Characterization and hydraulic conductivity of tropical soils and bentonite mixtures for CCL purposes, Engineering Geology, 196, 251−267.

22. Wang, C., Liu, F. (2014). Analytical Study on Hydraulic Seepage Pressure behind the Tunnel Lining. Physical and Numerical Simulation of Geotechnical Engineering, 17, 57−61.

23. Moayedi H., Mosallanezhad, M., Rashid, A., et al. (2020). A systematic review and meta-analysis of artificial neural network application in geotechnical engineering: theory and applications. Neural Computing and Applications, 32, 495−518.

24. Ranasinghe, R.A., Jaksa, M. B., Kuo, Y. L., et al. (2017). Application of artificial neural networks for predicting the impact of rolling dynamic compaction using dynamic cone penetrometer test results. Journal of Rock Mechanics and Geotechnical Engineering, 9(2), 340−349.

25. Shahin, M. A., Jaksa, M. B., Maier, H. R. (2001). Artificial neural network applications in geotechnical engineering. Australian Geomechanics Journal, 36, 49−62.

26. Shahin, M. A., Jaksa, M. B., Maier, H. R. (2009). Recent Advances and Future Challenges for Artificial Neural Systems in Geotechnical Engineering Applications. Advances in Artificial Neural Systems, 2009, 308239.

27. Chao, Z., Ma, G., Zhang, Y., et al. (2018). The application of artificial neural network in geotechnical engineering. IOP Conference Series Earth and Environmental Science, 189, 022054.

28. Das, S. K. (2013). Artificial Neural Networks in Geotechnical Engineering: Modeling and Application Issues. Metaheuristics in Water, Geotechnical and Transport Engineering, 231−270.

29. Load Cell Amplifier HX711 Breakout Hookup Guide. SparkFun. URL: https://learn. sparkfun.com/tutorials/load-cell-amplifier-hx711-breakout-hookup-guide/all (Access date: 10.02.2022).

30. Visual Basic.Net. Arduino Data Logger with VB Net (Export to Excel) Step by Step. Youtube. URL: https://www.youtube.com/watch?v=EQpflovuJgw (Access date: 10.02.2022).

31. Crawshaw, A. H., Robinson, A. D. (2002). The Calibration of Force Transducers ‘On-the-Fly’ (NPL Report CMAM). Teddington: National Physical Laboratory.

32. Brice, L., Knott, A., Wilson, A. (2007). Continuous calibration of force transducers. IMEKO 20th TC3, 3rd TC16 and 1st TC22 International Conference “Cultivating metrological knowledge”.

33. Bartel, T. W., Yaniv, S. L. (1997). Creep and creep recovery response of load cells tested according to the U. S. and international evaluation procedures. Journal of research of the National Institute of Standards and Technology, 102(3), 349−362.

34. Gao, H., Shao, M. (2015). Effects of temperature changes on soil hydraulic properties. Soil and Tillage Research, 153, 145−154.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.