Automated planning of open mining for longwall mining methods in the mgis mineframe

Authors: Nagovitsyn G.O.

One level of open mining planning is a prospective planning, used at the stage of making a decision on investments (feasibility study) as well as when changing internal or external planning conditions (financial, technical, social). To improve the efficiency of prospective planning, in the mining-geological information system MINEFRAME algorithms and software tools of the module of automated planning of open mining operations for the longwall mining methods have been developed. The module allows carrying out a comparative analysis of the choice of a complex mechanization structure on the basis of simulation modeling of technological processes of open mining. Using a set of initial data, a planning scenario is formed depending on the option of the complex mechanization structure: different types of benches characterized by their development technology get specific models of excavation and loading equipment in accordance with the layout scheme; transport chains are created; and the sequence of block producing with the definition of pit slope angles is set. Selection of the optimal structure of complex mechanization is made on the basis of the analysis of the obtained reporting data of each planning scenario on the performance of machinery and equipment.

Keywords: prospective planning, mining-geological information system, MINEFRAME longwall mining, simulation modeling, digital 3D modeling, geotechnology, digitalization.
For citation:

Nagovitsyn G. O. Automated planning of open mining for longwall mining methods in the mgis mineframe. MIAB. Mining Inf. Anal. Bull. 2022;(12-1):42-51. [In Russ]. DOI: 10.25018/0236_1493_2022_121_0_42.

Acknowledgements:
Issue number: 12
Year: 2022
Page number: 42-51
ISBN: 0236-1493
UDK: 622.271:622.013.3
DOI: 10.25018/0236_1493_2022_121_0_42
Article receipt date: 25.03.2022
Date of review receipt: 22.09.2022
Date of the editorial board′s decision on the article′s publishing: 10.11.2022
About authors:

G.O. Nagovitsyn, Researcher, Mining Institute, Kola Scientific Centre of Russian Academy of Sciences, 184209, Apatity, Russia, e-mail: nagovitsyn_go@bk.ru, ORCID ID: 0000-0003-4671-540X.

 

For contacts:
Bibliography:

1. Bilin A. L., Nagovitsyn G. O. Automation of long-term planning in open pits using computer modeling methods. MIAB. Mining Inf. Anal. Bull. 2019, no. S37, pp. 77—84. [In Russ]. DOI: 10.25018/0236-1493-2019-11-37-77-84

2. Smith M., Nogueira L. A comparison of DBS and nested pit stage design as a basis for strategic planning. Application of computers and operations research in the mineral industry (APCOM-2017). 2017, pp. 9—16. DOI: 10.1007/978-3-319-99220-4_8.

3. Newman A. M., Rubio E., Caro R., Weintraub A., Eurek K. A review of operations research in mine planning. Interfaces (Providence). 2010, vol. 40, no. 3, pp. 222—245.

4. Yakovlev A. M. Mining planning in the mode of quality management of raw materials on the basis of geoinformation modeling. MIAB. Mining Inf. Anal. Bull. 2021, no. 5-1, pp. 258—268. [In Russ]. DOI: 10.25018/0236_1493_2021_51_0_258.

5. Glebov A. V. Methodical principles of selecting the basic equipment of mechanization structures of cyclic-flow technology. MIAB. Mining Inf. Anal. Bull. 2021, no. 5-2, pp. 296—308. [In Russ]. DOI: 10.25018/0236_1493_2021_52_0_296.

6. Lukichev S. V., Nagovitsyn O. V., Bilin A. L., Belogorodtsev O. V., Rybin V. V., Gromov E. V., Lyubin A. N., Kornienko A. V., Gurin K. P., Nagovitsyn G. O., Laptev V. V., Toropov D. A. Nauchnye i prakticheskie aspekty primeneniya tsifrovykh tekhnologiy v gornoy promyshlennosti: monografiya [Scientific and practical aspects of digital technologies application in mining industry: monograph], Apatity, KNTs RAN, 2019, pp. 141—176. DOI: 10.37614/ KSC.978.5.91137.411.2.

7. Nagovitsyn O., Lukichev S. A conceptual approach to 4D modeling of mining technology objects. Application of computers and operations research in the mineral industry (APCOM-2017). 2017, pp. 25—29.

8. Vignali V., Mariapola-Accerra E., Lantieri C., Di Vincenzo F., Piacentini G., Pancaldi S. Buidling information modeling application for an existing road infrastructure. Automation in Construction. 2021, vol. 128, pp. 1—10. DOI: 10.1016/j.autcon.2021.103752.

9. Verbilo P. E., Iovlev G. A. A., Petrov N. E., Pavlenko G. D. Application of information modeling technologies for surveying support of mining operations. MIAB. Mining Inf. Anal. Bull. 2022, no. 6-2, pp. 60—79. [In Russ]. DOI: 10.25018/0236_1493_2022_62_0_60.

10. Vallejo M. N., Dimitrakopoulos R. Stochastic orebody modelling and stochastic longterm production scheduling at the KéMag iron ore deposit, Quebec, Canada. International Journal of Mining, Reclamation and Environment. 2018, vol. 33, no. 1, pp. 1—18. DOI: 10.1080/ 17480930.2018.1435969.

11. Grober T., Grober O. Modeling of an interactive distance learning platform by means of modern information technologies. E3S Web of Conferences. 2021, vol. 273, article 12006. DOI: 10.1051/e3sconf/202127312006.

12. Ramires A., Romero J. R., Ventura S. Interactive multi-objective evolutionary optimization of software architecture. Information Sciences. 2018, vol. 463—464, pp. 92—109. DOI: 10.1016/j.ins.2018.06.034.

13. Lukichev S. V., Nagovitsyn O. V., Semenova I. E., Belogorodtsev O. V. Mine planning and design in MINEFRAME. Gornyi Zhurnal. 2015, no. 8, pp. 53—57. [In Russ]. DOI: 10.17580/ gzh.2015.08.12.

14. Lukichev S., Nagovitsyn O., Belogorodtsev O. A systemic approach to solving the mining technology tasks based on modeling its objects and processes. Application of computers and operations research in the mineral industry (APCOM-2017). 2017, pp. 29—34.

15. Lukichev S., Nagovitsyn O., Shishkin A. Break line and shotpile surfaces modeling in design of large-scale blasts. Mine planning in digital transformation (APCOM-2019). 2019, pp. 279—285.

16. Paithankar A., Chatterjee S., Goodfellow R., Asad M. W. A. Simultaneous stochastic optimization of production sequence and dynamic cut-off grades in an open pit mining operation. Resources Policy. 2020, vol. 66, pp. 1—13. DOI: 10.1016/j. resourpol.2020.101634.

17. Kuznetsov I. S., Zinoviev V. V., Nikolaev P. I., Starodubov A. N. Computer simulation system for optimizing the parameters of excavator-automotive complexes. MIAB. Mining Inf. Anal. Bull. 2022, no. 6-1, pp. 304—316. [In Russ]. DOI: 10.25018/0236_1493_2022_61_0_304.

18. Makharatkin P. N., Abdulaev E. K., Vishnyakov G. Yu., Botyan E. Yu., Pushkarev A. E. Improving the performance of dump trucks on the basis of justification of their rational speed with simulation simulation. MIAB. Mining Inf. Anal. Bull. 2022, no. 6-2, pp. 237—250. [In Russ]. DOI: 10.25018/0236_1493_2022_62_0_237.

19. Nagovitsyn O. V., Lukichev S. V. Gorno-geologicheskie informatsionnye sistemy — istoriya razvitiya i sovremennoe sostoyanie [Mining and geological information systems — history of development and current state], Apatity, KNTs RAN, 2016, 196 p.

20. Nagovitsyn G. O., Bilin A. L., Zvonareva S. V. New possibilities of MGIS MINEFRAME for technological and cost calculation of transportation costs. MIAB. Mining Inf. Anal. Bull. 2019, no. S37, pp. 241—248. [In Russ]. DOI: 10.25018/0236-1493-2019-11-37-241-248.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.