Automated method of designing anvil-blocks of impact machines based on the physical and mechanical properties of destroyed objects

An increase in the efficiency of work related to the destruction of rock by impacts, with a constant impact energy determined by the kinetic energy of the anvil-block, is achieved by taking into account the effect of the geometric parameters of the elements of the impact units of the machine. Setting the anvil-block of a geometric shape, consistent with the forces of rock resistance to impact destruction, ensures the formation of such a impact pulse in the waveguide rod, all the energy of which is spent directly on the destruction of the rock, and the energy of the reflected wave tends to zero. Analytical methods for solving the problem of accounting for the geometry of anvil-block of the impact machine often do not lead to the rapid achievement of the goal due to the emergence of complex mathematical calculations. On this basis, the article sets and solves the problem of developing a numerical algorithm for synthesizing the geometric dimensions of the anvil-block depending on the parameters of the impact pulse and creating software based on it. According to the results of the research, an example of the synthesis of the geometry of an anvil-block for the destruction of a rock of high strength — granite is given, and a new technical solution is put forward for the execution of anvil-block with a curved forming side surface equipped with a cylindrical shell of constant thickness. This approach allows not only to increase the efficiency of rock destruction by impacts, but also to reduce the negative impact on the strength of the reflected impact waves on the machine.

Keywords: impact machine, impact, anvil-block, waveguide, impact unit, geometry of the anvil-block, numerical method, force-introduction, optimal impulse.
For citation:

Timofeev E. G., Teplyakova A. V., Zhukov I. A., Golikov N. S. Automated method of designing anvil-blocks of impact machines based on the physical and mechanical properties of destroyed objects. MIAB. Mining Inf. Anal. Bull. 2022;(12-2):257—269. [In Russ]. DOI: 10.25018/0236_1493_2022_122_0_257.

Issue number: 12
Year: 2022
Page number: 257-269
ISBN: 0236-1493
UDK: 622.233.5 : 004.9
DOI: 10.25018/0236_1493_2022_122_0_257
Article receipt date: 24.01.2022
Date of review receipt: 27.09.2022
Date of the editorial board′s decision on the article′s publishing: 10.11.2022
About authors:

Timofeev E. G.1, graduate student, e-mail:;
Teplyakova A. V.2, student, e-mail:;
Zhukov I. A.2, Dr. Sci. (Eng.), associate professor, professor of the Department of Mechanical Engineering,, e-mail:;
Golikov N. S.2, Cand. Sci. (Eng.), associate professor of the Department of Mechanical Engineering, e-mail:;
1 Siberian state industrial university, Novokuznetsk, 654007, Russia;
2 Saint-Petersburg Mining University, 199106, Saint-Petersburg,21st line, 2, Russia.


For contacts:

Zhukov I. A., e-mail:


1. Tolstunov S. A., Polovinko A. V. Determination of the effectiveness of the use of impact machines in the extraction of strong rocks. Journal of the Mining Institute. 2013, vol. 205, pp. 36–39. [In Russ].

2. Shadrina A. V., Saruev L. A. Analysis and scientific generalization of the results of studies of the shock-rotational method of drilling small-diameter wells from underground mine workings. Izvestiya Tomsk Polytechnic University. Georesource engineering. 2015, vol. 326, no. 8, pp. 120–136. [In Russ].

3. Danilov B. B., Smolyanitsky B. N., Cheshchin D. O. Substantiation of schematic diagrams of deflecting devices in installations of horizontal directional drilling of wells. Physico-technical problems of mineral development. 2015, no. 3, pp. 106–116. [In Russ].

4. Saruev L. A., Shadrina A. V., Melnov K. V. Saruev A. L. Results of experimental studies of the hydraulic pulse mechanism for drilling pilot wells during pipeline laying. Bulletin of the Tomsk Polytechnic University. Geo Аssets Engineering. 2021, vol. 332, no. 12, рр. 103–113. [In Russ]. DOI: 10.18799/24131830/2021/12/3468.

5. Aldannawy H., Rouabhi A., Gerbaud L. Percussive drilling: Experimental and numerical investigations. Rock Mechanics and Rock Engineering. 2022, vol. 55(3), pp. 1555–1570. DOI: 10.1007/s00603-021-02707-5.

6. Repin A. A., Timonin V. V., Alekseev S. E., Kokoulin D. I., Popelyukh A. I. Increasing the power of small-sized submersible pneumatic hammers. Physico-technical problems of mineral development. 2016, no. 6, pp. 86–93. [In Russ].

7. Litvinenko V. S., Dvoynikov M. V. Methodology for determining the parameters of drilling mode for directional straight sections of well using screw downhole motors, Journal of the Mining Institute. 2020, vol. 241, no. 1, pp. 105-112. DOI: 10.31897/pmi.2020.1.105. [In Russ].

8. Kerimov Z. E. Hydraulic impact machines and their practical application. Neew of the Tula State University. Technical sciences. 2019, no. 10, pp. 481–489. [In Russ].

9. Yungmeister D. A., Isaev A. I., Yacheikin A. I., Soboleva P. D. Field study of DTH hammer operation with rock drilling machines. MIAB. Mining Inf. Anal. Bull. 2021, no.3, pp. 28–36. [In Russ]. DOI: 10.25018/0236-1493-2021-3-0−28−36.

10. Litvinenko V. S., Vasiliev N. I., Lipenkov V. Ya., Dmitriev A. N., Podoliak A. V. Special aspects of ice drilling and results of 5G hole drilling at Vostok station, Antarctica. Annals of Glaciology. 2014, vol. 55(68), pp. 173-178. DOI: 10.3189/2014AoG68A040.

11. Kyzyrov K. B., Mitusov A. A., Reshetnikova O. S. Design research of parameters of hydraulic hammer for mining and construction. MIAB. Mining Inf. Anal. Bull. 2018, no.9, pp. 220–226. [In Russ]. DOI: 10.25018/0236-1493-2018-9-0−220−226.

12. Yungmeister D. A., Krupenski I., Lavrenko S. A. Analysis of the options of modernization of roller-bit drilling machines. Journal of the Mining Institute. 2018, vol. 231, pp. 321–325. [In Russ]. DOI: 10.25515/PMI.2018.3.321.

13. Chervov V. V., Tishchenko I. V., Chervov A. V., Vanag Y. V. Design of an energyintensive pneumatic hammer based on the physical simulation of the hammer–soil interaction. Journal of Mining Science. 2021, vol. 57, no. 1, pp. 86–95. DOI: 10.1134/ S1062739121010105.

14. Jungmeister D. A., Gasımov E. E., Isaev A. I. Substantiation of the design and parameters of the device for regulating the air flow in down-the-hole hammers of roller-cone drilling rigs. MIAB. Mining Inf. Anal. Bull. 2022; (6-2): 251-267. [In Russ]. DOI: 10.25018/0236_1493_2022_62_0_251.

15. Oparin V. N., Timonin V. V., Karpov V. N., Smolyanitsky B. N. Energy-based volumetric rock destruction criterion in the rotary–percussion drilling technology improvement. Journal of Mining Science. 2017, vol. 53, no. 6, pp. 1043–1064. DOI: 10.1134/S1062739117063114.

16. Simonov P. S. Single-impact rock crushing experiment. MIAB. Mining Inf. Anal. Bull. 2020, no.1, pp. 71–79. [In Russ]. DOI: 10.25018/0236-1493-2020-1-0−71−79.

17. Grinko A. A., Sysoev N. I., Grinko D. A. Improving shearing efficiency of percussion rotary drill bits. MIAB. Mining Inf. Anal. Bull. 2020, no. 9, pp. 102–115. DOI: 10.25018/02361493-2020-9-0−102−115.

18. Bolobov V. I., Plashchinsky V. A. Influence of impact duration on fracture efficiency in rocks and on plastic deformation of metals. MIAB. Mining Inf. Anal. Bull. 2022, no. 3, pp. 78–96. [In Russ]. DOI: 10.25018/0236_1493_2022_3_0_78.

19. Lagunova Yu. A., Mitusov A. A., Reshetnikova O. S. Specific features of the operation of impact mechanisms. Actual problems of increasing the efficiency and safety of mining and oilfield equipment operation. 2016, vol. 1, pp. 72–75. [In Russ].

20. Komissarov A. P., Glazyrin S. S. Parameters selection for drilling machines of percussive action. Izvestiya vysshikh uchebnykh zavedenii. Gornyi zhurnal. 2016, no. 5, pp. 84–88. [In Russ].

21. Teplyakova A. V., Azimov A. M., Alieva L., Zhukov I. A. Improvement of manufacturability and endurance of percussion drill assemblies: Review and analysis of engineering solutions. MIAB. Mining Inf. Anal. Bull. 2022; (9): 120-132. DOI: 10.25018/0236_ 1493_2022_9_0_120. [In Russ].

22. Dolgiy I. E., Nikolaev N. I. Resistance of rocks to crushing during well drilling. Journal of the Mining Institute. 2016, vol. 221, pp. 655–660. [In Russ]. DOI: 10.18454/ PMI.2016.5.655.

23. Bolobov V. I., Le T. B., Chupin S.A., Plaschinsky V.A. Dependence of the hydraulic hammer peak operating time on the wear resistance of its material. MIAB. Mining Inf. Anal. Bull. 2020, no. 5, pp. 68–79. [In Russ]. DOI 10.25018/0236-1493-2020-5-0−68−79.

24. Bolobov V. I., Plashchinsky V. A., Borisov S. V., Le-Thanh B. On the ratio of rock fracture parameters in static and dynamic conditions. Obogashchenie Rud. 2021, no. 5, pp. 3–9. [In Russ]. DOI: 10.17580/or.2021.05.01.

25. Lazutkin S. L., Lazutkina N. A. Determination of rational parameters of the executive elements of the shock system of an adaptive shock device. Modern high-tech technologies. 2019, no. 5, pp. 58–63. [In Russ].

26. Ding W.-S., Tian L., Liu K. Analysis of dynamic characteristic of transient impact from hydraulic hammer. Huanan Ligong Daxue Xuebao (Ziran Kexue Ban). 2016, vol. 44, no. 11, pp. 63–70. DOI: 10.3969/j.issn.1000−565X.2016.11.010.

27. Andersson H., Sigfridsson E., Simonsson K., Leidermark D., Hilding D., Schill M. Validation of a co-simulation approach for hydraulic percussion units applied to a hydraulic hammer. Advances in Engineering Software. 2019, vol. 131, pp. 102–115. DOI: 10.1016/j. advengsoft.2018.12.001.

28. Yampolsky D. Z. Numerical simulation of longitudinal impact. Comparison with experiment. Bulletin of Science and Technical Development. 2019, no. 9(145), pp. 30–51. [In Russ]. DOI: 10.18411/vntr2019−145−4.

29. Zhabin A. B., Lavit I., Kerimov Z. E. Results of theoretical studies of the power impulse system of a percussion instrument. Mining Equipment and Electromechanics. 2020, no. 5(151), pp. 9–15. [In Russ]. DOI: 10.26730/1816-4528-2020-5-9−15.

30. Dong Ge, Zhongwei Suo, Jianming Peng, Kun Bo, Jingqing Cheng, Pengyu Zhang. Dynamic responses of a fluidic hammer with hydraulic-damping-device. Journal of Petroleum Science and Engineering. 2021, vol. 200, p. 108243. DOI: 10.1016/j.petrol.2020.108243.

31. Kenneth Omokhagbo Afebu, Yang Liu, Evangelos Papatheou. Feature-based intelligent models for optimisation of percussive drilling. Neural Networks. 2022, vol. 148, pp. 266–284. DOI: 10.1016/j.neunet.2022.01.021.

32. Zhukov I. A., Repin A. A., Timofeev E. G. Automated calculation and analysis of impacts generated in mining machine by anvil blocks of complex geometry. IOP Conf. Series: Earth and Environmental Science. 2018. Vol. 134. P. 012071. DOI: 10.1088/17551315/134/1/012071.

33. Timofeev E. G., Zhukov I. A., Teplyakova A. V. Program complex for automated calculation of the geometry of impact units of machines. Programmnaya Ingeneria. 2021, vol. 12, no. 8, pp. 404–412. [In Russ]. DOI: 10.17875/prin.12.404−412.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.