Nitrate–nitrite–nitric oxidation of porphyry copper ore with subsequent activated sulfuric acid-and chloride leaching of copper and noble metals

Malmyzh is a world-class and promising copper deposit in the Nanai district in the Khabarovsk Krai. The 2024–25 work schedule includes construction of a processing plant with an annual capacity of 90 Mt at the deposit. The main processing technology will be flotation, and heap leaching can be used for some ore types and grades. Deep-level mining may include in-situ leaching. Vertically, Malmyzh deposit contains three distinct zones of oxidized, complex and primary sulfide ore. Primary ore features different texture, structure and mineral composition, which conditions the difference in the process properties of the ore. Copper in this ore is mainly associated with chalcopyrite which resists leaching, and it is required to select flow chart, modes and parameters of leaching such that ensure effective dissolution of chalcopyrite. The percolation leaching tests of primary ore with activated compound solutions were carried out. Electrochemical and electrophotochemical activation of the leach solutions was implemented both before soaking of ore, for its oxidation and initial leaching, and directly prior to sprinkling. The total copper recovery is 78%, and this is a high result given the leaching resistance of primary ore. In this manner, processability of primary porphyry copper ore with low copper and gold content using the heap and in-situ leaching approaches has been proved.

Keywords: copper ore, low-grade ore, primary ore, cyanide-free leaching, activated leaching, percolation leaching.
For citation:

Rasskazova A. V., Sekisov A. G., Rasskazov M. I. Nitrate–nitrite–nitric oxidation of porphyry copper ore with subsequent activated sulfuric acid-and chloride leaching of copper and noble metals. MIAB. Mining Inf. Anal. Bull. 2023;(9):130-140. [In Russ]. DOI: 10.25018/0236_1493_2023_9_0_130.

Acknowledgements:

The studies used the equipment of the Scientific Evidence Storage and Processing Share Center supported by the Ministry of Science and Higher Education of the Russian Federation under Contract No. 075-15-2021-663. The chemical analysis and in-process tests were carried out at the Mineral Research Share Center of the Far East Branch of the Russian Academy of Sciences.

Issue number: 9
Year: 2023
Page number: 130-140
ISBN: 0236-1493
UDK: 622.772
DOI: 10.25018/0236_1493_2023_9_0_130
Article receipt date: 24.03.2023
Date of review receipt: 13.06.2023
Date of the editorial board′s decision on the article′s publishing: 10.08.2023
About authors:

A.V. Rasskazova1, Cand. Sci. (Eng.), Leading Researcher, e-mail: annbot87@mail.ru, ORCID ID: 0000-0002-6998-8120,
A.G. Sekisov1, Dr. Sci. (Eng.), Deputy Director, e-mail: sekisovag@mail.ru, ORCID ID: 0000-0001-5780-6150,
M.I. Rasskazov1, Senior Researcher, e-mail: rasm.max@mail.ru, ORCID ID: 0000-0002-9130-8072,
1 Mining Institute, Far Eastern branch of Russian Academy of Sciences, Khabarovsk, 680000, Russia.

 

For contacts:

A.V. Rasskazova, e-mail: annbot87@mail.ru.

Bibliography:

1. Khalezov B. D. Kuchnoe vyshchelachivanie mednykh i medno-tsinkovykh rud [Heap leaching of copper and copper-zinc ores], Ekaterinburg, RIO UrO RAN, 2013, 322 p.

2. Chmykhalova S. V., Morozova O. V. Modeling of processes of oxidation and leaching of copper from minerals in stockpiled tailings of concentrating plants. MIAB. Mining Inf. Anal. Bull. 2006, no. 5, pp. 160—164. [In Russ].

3. Rasskazova A. V. Methods of beneficiation of poor gold-copper ores. Problems of Subsoil Use. 2019, no. 2(21), pp. 122—129. [In Russ]. DOI: 10.25635/2313-1586.2019.02.122.

4. Schlesinger M. E., Alvear Flores G. R. F. Extractive metallurgy of copper. 6th edition, chapter 14. Hydrometallurgical copper extraction: introduction and leaching. 2022, pp. 361—406. DOI: 10.1016/B978-0-12-821875-4.00003-1.

5. Lizama H. M. Processing of chalcopyrite ore by heap leaching and flotation. International Journal of Mineral Processing. 2017, vol. 168, рр. 55—67. DOI: 10.1016/j.minpro.2017.09.009.

6. Khalezov B. D., Vatolin N. A., Zelenin E. A. Extraction of non-ferrous and rare metals from ores, concentrates and slags. Problems of Subsoil Use. 2014, no. 2(2), pp. 197—212. [In Russ].

7. Khalezov B. D. Methods for processing ores of the Udokan deposit. Metallurg. 2014, no. 12, pp. 77—79. [In Russ].

8. Iodis V. A. Analysis of methods of heap bacterial-chemical leaching of sulfide ores containing heavy non-ferrous metals. Mineral mining & conservation. 2021, no. 5, pp. 44—51. [In Russ].

9. Iodis V. A. Methods of heap biochemical leaching of sulfide ores containing Cu, Ni and other valuable metals. MIAB. Mining Inf. Anal. Bull. 2020, no. S46, pp. 112—119. [In Russ]. DOI: 10.25018/0236-1493-2020-12-46-112-119.

10. Khalezov B. D., Vatolin N. A., Nezhivykh V. A., Tveryakov A. Yu. Heap leaching of copper at the Kounrad mine. MIAB. Mining Inf. Anal. Bull. 2002, no. 7, pp. 209—217. [In Russ].

11. Sekisov A. G., Ivanov V. V., Rasskazova A. V., Ignatiev E. K. Geochemical features of ores in the oxidation zone of the Malmyzh copper-gold deposit and the results of their geotechnological testing. Gornyi Zhurnal. 2018, no. 10, pp. 30—35. [In Russ]. DOI: 10.17580/gzh.2018. 10.05.

12. Rasskazova A. V., Sekisov A. G., Kirilchuk M. S., Vasyanov Y. A. Stage-activation leaching of oxidized copper— gold ore: theory and technology. Eurasian Mining. 2020, no. 1, pp. 52—55. DOI: 10.17580/em.2020.01.10.

13. Khalezov B. D. Methods for processing ores of the Udokan deposit. Metallurg. 2014, no. 12, pp. 77—79. [In Russ].

14. Khalezov B. D., Nezhivykh V. A. Heap leaching of copper at the Kalmakyr mine of the Almalyk Mining and Metallurgical Combine (AGMK). MIAB. Mining Inf. Anal. Bull. 2004, no. 2, pp. 245—250. [In Russ].

15. Lu J., Dreisinger D., West-Sells P. Acid curing and agglomeration for heap leaching. Hydrometallurgy. 2017, vol. 167, pp. 30—35 DOI: 10.1016/j.hydromet.2016.10.019.

16. Puvvada G. V. K., Murthy D. S. R. Selective precious metals leaching from a chalcopyrite concentrate using chloride hypochlorite media. Hydrometallurgy. 2000, vol. 58, рр. 185—191. DOI: 10.1016/S0304-386X(00)00083-9.

17. Xia Z., Zhang X., Huang X. Hydrometallurgical stepwise recovery of copper and zinc from smelting slag of waste brass in ammonium chloride solution. Hydrometallurgy. 2020, vol. 197, article 105475. DOI: 10.1016/j.hydromet.2020.105475.

18. Cui F., Mu W., Zhai Y. The selective chlorination of nickel and copper from low-grade nickel-copper sulfide-oxide ore: Mechanism and kinetics. Separation and Purification Technology. 2020, vol. 239, article 116577. DOI: 10.1016/j.seppur.2020.116577.

19. Sekisov A., Rasskazova A. Assessment of the possibility of hydrometallurgical processing of low-grade ores in the oxidation zone of the Malmyzh Cu-Au porphyry deposit. Minerals. 2021, vol. 11, no. 1, pp. 1—11. DOI: 10.3390/min11010069.

20. Khanchuk A. I., Grebennikov A. V., Ivanov V. V. Albian–Cenomanian orogenic belt and igneous province of Pacific Asia. Russian Journal of Pacific Geology. 2019, vol. 38, no. 3, pp. 4—29. [In Russ]. DOI: 10.30911/0207-4028-2019-38-3-4-29.

21. Marín O. A., Ordóñez J. I., Gálvez E. D., Cisternas L. A. Pourbaix diagrams for copper ores processing with seawater. Physicochemical Problems of Mineral Processing. 2020, vol. 56, no. 4, pp. 625—640. DOI: 10.37190/ppmp/123407.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.