Frequency dependence of permittivity and conductivity of reservoir rocks

The frequency dispersion analysis is important for the development and application of dielectric logging and ground-penetrating radar methods in remote sounding of soils and rocks in a micro wave range. This study focuses on frequency dispersion of permittivity and conductivity in sandstone and limestone in a frequency range from 120 Hz to 200 kHz. It is found that frequency dependence of permittivity and conductivity in sandstone shows up in the whole frequency range being tested. In sandstone, the permittivity decreased from the value of 165.5±72.3 at 120 Hz to 19.3±2.9 at 200 kHz, and conductivity changed from 0.45±0.39 µS/m at 120 Hz to 235.4±144.7 µS/m at 200 kHz. In limestone, these values changed in a narrower range. The permittivity in limestone was 5.85±0.48 at 120 Hz and 5.41±0.34 at 5 kHz. In the range of 5–200 kHz, these values remain practically unchanged. Since the main type of polarizing of heterogeneous media which have effect on the frequency dependence of electric properties is the Maxwell–Wagner–Sillars interfacial polarization, the dispersion of permittivity and conductivity shows up stronger in sandstone being a more nonuniform rock type than limestone.

Keywords: frequency dependence, permittivity, conductivity, rock, limestone, sandstone, dispersion.
For citation:

Gapeev A. A., Cherepetskaya E. B., Kudinov I. A., Semenov Ya. G., Vasilevykh V. V. Frequency dependence of permittivity and conductivity of reservoir rocks. MIAB. Mining Inf. Anal. Bull. 2024;(9):117-128. [In Russ]. DOI: 10.25018/0236_1493_2024_9_ 0_117.

Acknowledgements:
Issue number: 9
Year: 2024
Page number: 117-128
ISBN: 0236-1493
UDK: 552.08
DOI: 10.25018/0236_1493_2024_9_0_117
Article receipt date: 13.05.2024
Date of review receipt: 18.06.2024
Date of the editorial board′s decision on the article′s publishing: 10.08.2024
About authors:

A.A. Gapeev1, Graduate Student, e-mail: agapeev@misis.ru, ORCID ID: 0009-0001-7744-9426,
E.B. Cherepetskaya1, Dr. Sci. (Eng.), Professor, e-mail: echerepetskaya@mail.ru, ORCID ID: 0000-0002-9642-21492,
I.A. Kudinov1, Research Project Engineer, e-mail: igor@optoacoustic.ru,
Ya.G. Semenov1, Laboratory Assistant, e-mail: y@48.org, ORCID ID: 0000-0003-0313-2714,
V.V. Vasilevykh1, Laboratory Assistant, e-mail: vova398777@gmail.com, ORCID ID: 0000-0001-8128-0531,
1 NUST MISIS, 119049, Moscow, Russia.

 

For contacts:

A.A. Gapeev, e-mail: agapeev@misis.ru.

Bibliography:

1. Blinov L. M., Gerasimenko A. P., Gulyaev Yu. V., Dolgolaptev A. V., Cherepenin V. A. About a possible development of an «explosive» massive hard rocks-dielectrics destruction technology, based on a directed concentrated electromagnetic microwave power flux. Journal of Radio Electronics. 2019, no. 2. 42 p. [In Russ]. DOI: 10.30898/1684-1719.2019.2.4.

2. Macheret Yu. Ya., Sosnovsky A. V., Glazovsky A. F. Dielectric properties of soils and assessment of their hydrothermal state under snow cover based on radio-echo sounding data. Ice and Snow. 2022, vol. 62, no. 2, pp. 203—216. [In Russ]. DOI: 10.31857/S2076673422020126.

3. Sizin P. E., Voznesenskii A. S., Kidima-Mbombi L. K. Influence of random parameter joint length on rock electrical conductivity. Mining Science and Technology (Russia). 2023, vol. 8, no. 1, pp. 30—38. [In Russ]. DOI: 10.17073/2500-0632-2022-07-11.

4. Auzin A. A., Zatsepin S. A. About the dispersion of dielectric permeability of the geological environment (in connection with interpretation of GPR materials). Proceedings of Voronezh State University. Series: Geology. 2015, no. 4, pp. 122—127. [In Russ].

5. Cai L., Deng S., Yuan X. Detection performance analysis of array dielectric dispersion logging based on sensitivity function. Sensors. 2023, vol. 23, no. 12, article 5737. DOI: 10.3390/s23125737.

6. Wang S., Sun Q., Wang N., Yang L. Variation in the dielectric constant of limestone with temperature. Bulletin of Engineering Geology and the Environment. 2020, vol. 79, pp. 1349—1355. DOI: 10.1007/s10064-019-01647-3.

7. Chen Sh., Ke Sh., Jia J., Cheng L., Shi H., Zhang Y. A laboratory study on the dielectric spectroscopy of sandstone and the improvement of dispersion model. Journal of Petroleum Science and Engineering. 2022, vol. 216, article 11065.

8. Connoly P. R. J., Josh M., O’Neill K. T., Seltzer S. J., Wigand M. O., Clennell M. B., May E. F., Johns M. L. Dielectric polarization studies in partially saturated. Journal of Geophysical Research: Solid Earth. 2019, vol. 124, no. 11, pp. 10721—10734.

9. Zinnatullin R. R., Kovaleva L. A., Sultanguzhin R. F. Investigation of dielectric properties of water-softened rocks and their heating in electromagnetic field. Teplofizika Vysokikh Temperatur. 2019, vol. 57, no. 1, pp. 143—145. [In Russ].

10. Gonzalez-Teruel J. D., Jones S. B., Soto-Valles F., Torres-Sanchez R., Lebron I., Friedman S. P., Robinson D. A. Dielectric spectroscopy and application of mixing models describing dielectric dispersion in clay minerals and clayey soils. Sensors. 2020, vol. 20, article 6678. DOI: 10.3390/s20226678.

11. Archie G. E. The electrical resistivity log as an aid in determining some reservoir characteristics. Transactions of the AISME. 1946, vol. 146 , no. 1, pp. 54—62.

12. Shen L. C., Savre W. C., Price J. M., Athavale K. Dielectric properties of reservoir rocks at ultra-high frequencies. Geophysics. 1985, vol. 50, no. 4, pp. 692—704.

13. Benavides J. A. A. Dielectric response interpretation of shale rocks with low cation exchange capacity. Second International Meeting for Applied Geoscience & Energy. 2022, pp. 3568—3570.

14. Yan W., Sun J., Zhang J., Yuan W., Zhang L., Cui L., Dong H. Studies of electrical properties of low-resistivity sandstones based on digital rock technology. Journal of Geophysics and Engineering. 2018, vol. 15, no. 1, pp. 153—163. DOI: 10.1088/1742-2140/aa8715.

15. Bobrov P. P., Belyaeva T. A., Kroshka E. S., Rodionova O. V. Relationship of low-frequency dielectric permittivity with the conductivity of low-salted sand samples. Radio communication technology. 2020, no. 3 (46), pp. 85—94. [In Russ]. DOI: 10.33286/2075-8693-2020-46-85-94.

16. Loewer M., Günther T., Igel J., Kruschwitz S., Martin Y., Wagner N. Ultra-broad-band electrical spectroscopy of soils and sediments —a combined permittivity and conductivity model. Geophysical Journal International. 2017, vol. 210, no. 3, pp. 1360—1373. DOI: 10.1093/gji/ggx242.

17. Ramia M. E., Martin C. A. Sedimentary rock porosity studied by electromagnetic techniques: nuclear magnetic resonance and dielectric permittivity. Applied Physics A. 2015, vol. 11, no. 2, pp. 769—777.

18. Zhao P., Fu J., Shi Y., Li G., Ostadhassan M., Luo M., Mao Zh. Hydrocarbon saturation in shale oil reservoirs by inversion of dielectric dispersion logs. Fuel. 2020, vol. 266, article 116934. DOI: 10.1016/j.fuel.2019.116934.

19. Kang Z., Ke Sh., Yin Ch., Wang W., Zheng Sh., Sun X., Li J. Dielectric constant measurements of sweep frequency and its effect from 20 MHz to 1000 MHz. Journal of Petroleum Science and Engineering. 2018, vol. 166, pp. 602—610. DOI: 10.1016/j.petrol.2018.03.093.

20. Ostertak D. I. An analysis of electrostatic interactions in parallel-plate MEMS with regard to fringing field effects within a 3D-approach. Proceedings of the Russian higher school Academy of sciences. 2017, no. 1(34), pp. 116—132. [In Russ]. DOI: 10.17212/1727-2769-2017-1-116-132.

21. Chen S., Nguyen K. N., Afsar M. N. Complex dielectric permittivity measurements of glasses at millimeter waves and terahertz frequencies. Proceedings of the 36th European Microwave Conference. 2007, pp. 384—387.

22. Mavko G., Mukerji T., Dvorkin J. Electrical Properties. Cambridge University Press. 2020, 728 p.

23. Hongshuai Bao, Tongcheng Han, Li-Yun Fu Dielectric properties of porous rocks with partially saturated fractures from finite-difference modeling. Geophysics. 2022, vol. 87, no. 5, pp. 1—53. DOI: 10.1190/geo2022-0041.1.

24. Han Tongcheng, Yang Y. S. Numerical and theoretical simulations of the dielectric properties of porous rocks. Journal of Applied Geophysics. 2018, vol. 159, pp. 186—192.

25. Olatinsu O. B., Olorode D. O., Oyedele K. F. Radio frequency dielectric properties of limestone and sandstone from Ewekoro, Eastern Dahomey Basin. Advances in Applied Science Research. 2013, vol. 4, no. 6, pp. 150—158.

26. Lesmes D. P., Morgan F. D. Dielectic spectroscopy of sedimentary rocks. Journal of Geophysical Research. 2001, vol. 106, no. B7, pp. 13329—13346.

27. Norbisrath J. H., Weger R. J., Eberli G. P. Complex resistivity spectra and pore geometry for predictions of reservoir properties in carbonate rocks. Journal of Petroleum Science and Engineering. 2017, vol. 151, pp. 455—467.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.