Numerical simulation of pressure loss in a classifier with coaxial pipes

The paper deals with a pressing problem of classification of fine particulate materials with a cut size of 30 µm at industrial plants. A new design of the classifier with coaxial pipes is developed. The principle of operation of the classifier is based on the formation of a stable vortex structure in the inter-pipe space. A simplified 3D model of the classifier is presented. The work aims to compare experimental data and simulation results to calculate pressure losses in the classifier with coaxial pipes when the number of elements in the mesh is changed. It is found that the pressure loss in the classifier varies from 173 to 972 Pa at a gas velocity at the inlet from 7.34 to 22.21 m/s. The permissible number of iterations to reach a quasistationary regime starts from 120, depending on the gas velocity at the inlet. The error between the laboratory experiment and the numerical simulation is not more than 16, 15, and 10% with the number of the elements in the mesh 1131031, 2813963, and 6749250 pcs, respectively.

Keywords: separation, fine particles, vortices, pressure drop, computational mesh.
For citation:

Zinurov V. E., Kharkov V. V., Madyshev I. N. Numerical simulation of pressure loss in a classifier with coaxial pipes. MIAB. Mining Inf. Anal. Bull. 2022;(10-1):173—181. [In Russ]. DOI: 10.25018/0236_1493_2022_101_0_173.

Acknowledgements:

The reported study was funded by the grant of the President of the Russian Federation, project number MK-2710.2021.4.

Issue number: 10
Year: 2022
Page number: 173-181
ISBN: 0236-1493
UDK: 622
DOI: 0.25018/0236_1493_2022_101_0_173
Article receipt date: 20.03.2022
Date of review receipt: 27.06.2022
Date of the editorial board′s decision on the article′s publishing: 10.09.2022
About authors:

Zinurov V. E.1, Postgraduate Student, Assistant Professor, e-mail: vadd_93@mail.ru, ORCID ID: 0000-0002-1380-4433;
Kharkov V. V.2, Cand. Sci. (Eng.), Associate Professor, e-mail: v.v.kharkov@gmail.com, ORCID ID: 0000-0002-8219-7323;
Madyshev I. N.2, Cand. Sci. (Eng.), Associate Professor, e-mail: ilnyr_91@mail.ru, ORCID ID: 0000-0001-9513-894X;
1 Kazan State Power Engineering University, 420066, Kazan, Russia;
2 Kazan National Research Technological University, 420015, Kazan, Russia.

 

For contacts:

Zinurov V. E., e-mail: vadd_93@mail.ru.

Bibliography:

1. Shapiro, M., Galperin, V. (2005). Air classification of solid particles: a review. Chemical Engineering and Processing: Process Intensification, 2005, 44(2), 279−285.

2. Dmitriev, A. V., Zinurov, V. E., Dmitrievaм O. S. (2018). Influence of elements thickness of separation devices on the finely dispersed particles collection efficiency. MATEC Web of Conferences, 224, 2073. DOI : 10.1051/matecconf/201822402073.

3. Assatory, A., Vitelli, M., Rajabzadeh, A. R., Legge, R. L. (2019). Dry fractionation methods for plant protein, starch and fiber enrichment: A review. Trends in Food Science & Technology, 86, 340−351. DOI: 10.1016/j.tifs.2019.02.006.

4. Feng, Y., Xu, S., Wang, C. (2021). Particle classification characteristics of the particle classifier of decoupled dual loop reaction system, 299, 120888.

5. Dmitriev, A. V., Zinurov, V. E., Dmitrieva, O. S. (2019). Collecting of finely dispersed particles by means of a separator with the arc-shaped elements. E3S Web of Conferences, 2019, vol. 126, p. 00007. DOI: 10.1051/e3sconf/201912600007.

6. Gendler S. G., Fazylov I. R. Application efficiency of closed gathering system toward microclimate normalization in operating galleries in oil mines. MIAB. Mining Inf. Anal. Bull. 2021;(9):65–78. [In Russ]. DOI: 10.25018/0236_1493_2021_9_0_65.

7. Hasse, C., Debiagi, P., Wen, X. (2021). Advanced modeling approaches for CFD simulations of coal combustion and gasification. Progress in Energy and Combustion Science, 86, 100938. DOI: 10.1016/j.pecs.2021.100938.

8. Higashitani, K., Makino H., Matsusaka, S. (2019). Powder Technology Handbook. CRC Press, 679 p.

9. Jeong, W., Seong, J. (2014). Comparison of effects on technical variances of computational fluid dynamics (CFD) software based on finite element and finite volume methods. International Journal of Mechanical Sciences, 2014, 78, 19–26.

10. Jin, Y., Lu, H., Guo, X. (2019). Flow patterns classification of dense-phase pneumatic conveying of pulverized coal in the industrial vertical pipeline. Advanced Powder Technology, 7 (30), 1277–1289. DOI: 10.1016/j.apt.2019.03.005.

11. Katare, P., Krupan, A., Dewasthale, A. (2021). CFD analysis of cyclone separator used for fine filtration in separation industry. Case Studies in Thermal Engineering, 28, 101384. DOI: 10.1016/j.csite.2021.101384.

12. Denmud, N., Baite, K., Plookphol, T., Janudom, S. (2019). Effects of Operating Parameters on the Cut Size of Turbo Air Classifier for Particle Size Classification of SAC305 Lead-Free Solder Powder. Processes, 7, 427. DOI: 10.3390/pr7070427.

13. Ortega-Rivas, E. (2017). Unit Operations of Particulate Solids: Theory and Practice. CRC Press, 493. DOI: 10.1201/b11059.

14. Putra, R. A., Schäfer T., Neumann, M. (2018). CFD studies on the gas-liquid flow in the swirl generating device. Nuclear Engineering and Design, 332, 213–225. DOI: 10.1016/j. nucengdes.2018.03.034.

15. Bliznyuk, V. V., Parshin, V. A., Savinov, N. S., Selivanov, A. A., Tarasov, A. E. (2021). Features of measurements the IR radiation power of a laser diode used in active optoelectronic systems for studying flows. Journal of Physics: Conference Series, 2127(1), 012047. DOI: 10.1088/1742−6596/2127/1/012047.

16. Ivannikov, A., Chumakov, A., Prischepov, V., Melekhina, K. (2021). Express determination of the grain size of nickel-containing minerals in ore material. Materials Today: Proceedings, 38( 4), 2059−2062. DOI: 10.1016/j.matpr.2020.10.141.

17. Tryggvason, G. (2016). Computational Fluid Dynamics. Elsevier, Boston, 2016, 227 p.

18. Wang, H., Wang, H., Gao, F. (2018). Literature review on pressure–velocity decoupling algorithms applied to built-environment CFD simulation. Building and Environment, 143, 671–678. DOI: 10.1016/j.buildenv.2018.07.046.

19. Zatsarinnaya, J. N., Logacheva, A. G., Solovyova, A. A. (2019). Analysis of thermodynamic efficiency of the fuel preparation systems with an intermediate hopper at thermal power plants. IOP Conference Series: Earth and Environmental Science, 1 (288), 012130. DOI: 10.1088/1755−1315/288/1/012130.

20. Zinurov, V., Dmitriev, A., Kharkov, V. (2020). Influence of process parameters on capturing efficiency of rectangular separator. IEEE, 1–4. DOI: 10.1109/ ITNT49337.2020.9253320.

21. Zinurov, V., Dmitriev, A., Kharkov, V. (2021). Design of High-Efficiency Device for Gas Cleaning from Fine Solid Particles. Lecture Notes in Mechanical Engineering, 378–385. DOI: 10.1007/978−3-030−54817−9_44.

22. Zinurov, V. E., Dmitriev, A. V., Badretdinova, G. R. The gas flow dynamics in a separator with coaxially arranged pipes. MATEC Web of Conferences, 2020, vol. 329, p. 03035. DOI: 10.1051/matecconf/202032903035.

23. Rybak, J., Khairoutdinov, M. M., Kuziev, D. A., Kongar-Syuryun, Ch.B., Babyr, N. V. (2022). Prediction of the geomechanical state of the rock mass when mining salt deposits with stowing. Journal of Mining Institute, 253, 61−70. DOI: 10.31897/PMI.2022.2.

24. Zinurov, V. E., Dmitriev, A. V., Ruzanova, M. A. (2020). Classification of bulk material from the gas flow in a device with coaxially arranged pipes. E3S Web of Conferences, 193, 01056. DOI: 10.1051/e3sconf/202019301056.

25. Zinurov, V. E., Dmitriev, A. V., Badretdinova, G. R., Bikkulov, R. Y., Madyshev, I. N. (2020). The gas flow dynamics in a separator with coaxially arranged pipes. MATEC Web Conf., 329, 03035. DOI: 10.1051/matecconf/202032903035

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.