Numerical modeling of seismic wave impact on enclosing rock mass surrounding underground structures

Currently Hanoi, the capital city of Vietnam, is solving the problem connected with traffic congestion thanks to the designed and built metro system. Some infrastructure objects of the metro are situated at a depth down to 20 m below ground surface. In order to ensure safe and reliable operation of underground structures, it is required to estimate impact of seismic waves induced by earthquakes. Modern Vietnam occupies the north and northeast of the Sunda Plate which is a seismically active structure. In the mid-1980s many Richter magnitude 5–8 earthquakes were recorded within the boundaries of the city agglomeration of Hanoi, which damaged some buildings and structures on ground surface. It is important and relevant to undertake and compare in-situ measurement and numerical modeling of seismic wave impacts on underground structures of the Hanoi Metro. Solution of such geodynamic problem at a certain confidence of the result uses the developed and approved numerical-and-analytical approach (modification of a known method) which includes influence of junctions in the metro tunnel lining in calculation. Mathematical modeling describes the behavior of the main stress state parameters in the tunnel lining in the Hanoi Metro, and enables justification of the choice of both lining material and lining parameters with regard to the impact of seismic waves generated by earthquakes. Drilling in mines also induces adverse seismic waves which can cause deformation and disintegration in enclosing rock mass surrounding various-purpose underground openings. For instance, surface mine operations at the Hanoi apatite–nepheline deposit involves drilling and blasting connected with high energy release. The latter provokes considerable stresses and straining which directly affect safety and stability of underground openings. In this respect, it is necessary to develop and improve universal methods of numerical and mathematical modeling and to create computing systems on this basis. This article describes the developed mathematical modeling of blasting-induced seismic wave impact on a nonuniform enclosing rock mass surrounding an underground tunnel. Application of Godunov’s splitting using the authors’ numerical algorithm made it possible to design a computer program for the numerical modeling of geodynamic processes towards safety and integrity of underground structures during drilling and blasting.

Keywords: stress state, Hanoi Metro, drilling and blasting, seismic waves, in-situ measurements, numerical modeling, computation program, prediction of blasting-induced and seismic wave impact on underground structures.
For citation:

Gospodarikov A. P., Zatsepin M. A., Ya.N. Vykhodtsev, Nguen C. T. Numerical modeling of seismic wave impact on enclosing rock mass surrounding underground structures. MIAB. Mining Inf. Anal. Bull. 2022;(7):116-130. [In Russ]. DOI: 10.25018/0236_1493_ 2022_7_0_116.

Acknowledgements:

The study was supported under the state contract for scientific research in 2021, Contract No. FSRW-2020-0014.

Issue number: 7
Year: 2022
Page number: 115-130
ISBN: 0236-1493
UDK: 622.235.535.2
DOI: 10.25018/0236_1493_2022_7_0_115
Article receipt date: 24.12.2021
Date of review receipt: 20.04.2022
Date of the editorial board′s decision on the article′s publishing: 10.06.2022
About authors:

A.P. Gospodarikov1, Dr. Sci. (Eng.), Head of Chair, e-mail: Gospodarikov_AP@pers.spmi.ru, ORCID ID: 0000-0003-1018-6841,
M.A. Zatsepin1, Cand. Sci. (Phys. Mathem.), Assistant Professor, e-mail: Zatsepin_MA@pers.spmi.ru, ORCID ID: 0000-0002-6304-8349,
Ya.N. Vykhodtsev, Cand. Sci. (Eng.), Senior Engineer Programmer, T-Systems Multimedia Solutions, Saint-Petersburg, Russia, e-mail: 999fff@gmail.com,
C.T. Nguen, Cand. Sci. (Eng.), Assistant Professor, Institute of Marine Geology and Geophysics, Hanoi University of Mining and Geology, Hanoi, Vietnam, e-mail: nguyenthanh.xdctn47@gmail.com,
1 Saint-Petersburg Mining University, 199106, Saint-Petersburg, Russia.

 

For contacts:

Zatsepin M.A., e-mail: Zatsepin_MA@pers.spmi.ru.

Bibliography:

1. Gospodarikov A. P., Nguyen Chi Thanh Some approaches determine the stress state of lining of underground tunnels of hanoi taking into account influence of seismic waves of earthquakes. MIAB. Mining Inf. Anal. Bull. 2017, no. 6, pp. 244—252. [In Russ].

2. Protosenya A. G., Verbilo P. E., Karasev M. A. Research of the mechanical characteristics’ anisotropy of apatite-nepheline ores block rock mass. International Journal of Mechanical Engineering and Technology. 2018, no. 11, pp. 1962—1972.

3. Trushko V. L., Protosenya A. G. Prospects of geomechanics development in the context of new technological paradigm. Journal of Mining Institute. 2019, vol. 236, pp. 162—166. [In Russ]. DOI: 10.31897/PMI.2019.2.162.

4. Zuev B. Yu. Methodology of modeling nonlinear geomechanical processes in blocky and layered rock masses on models made of equivalent materials. Journal of Mining Institute. 2021, vol. 250, pp. 542—552. [In Russ]. DOI:10.31897/PMI.2021.4.7.

5. Cai W., Dou L., Si G., Hu Y. Fault-induced coal burst mechanism under mining-induced static and dynamic stresses. Engineering. 2021, vol. 7, no. 5, pp. 687—700. DOI: 10.1016/j. eng.2020.03.017.

6. Zuev B. Yu., Zubov V. P., Fedorov A. S. Application prospects for models of equivalent materials in studies of geomechanical processes in underground mining of solid minerals. Eurasian Mining. 2019, no. 1, pp. 8—12. DOI: 10.17580/em.2019.01.02.

7. Glushikhin F. P., Kuznetsov G. N., Shklyarskiy M. F., Pavlov V. N., Zlotnikov M. S. Modelirovanie v geomekhanike [Modeling in geomechanics], Moscow, Nedra, 1991, 240 p.

8. Gospodarikov A. P., Vykhodtsev Y. N., Zatsepin M. A. Mathematical modeling of seismic explosion waves impact on rock mass with a working. Journal of Mining Institute. 2017, vol. 226, pp. 405—411. [In Russ]. DOI: 10.25515/PMI.2017.4.405.

9. Karasev M. A., Sotnikov R. O. Prediction of the stress state of the shotcreting support under repeated seismic load. Journal of Mining Institute. 2021, vol. 251, pp. 626—638. [In Russ]. DOI: 10.31897/PMI.2021.5.2.

10. Godunov S. K., Zabrodin A. V., Ivanov M. Ya., Kraiko A. N., Prokopov G. P. Chislennoe reshenie mnogomernykh zadach gazovoy dinamiki [Numerical solution of multidimensional problems of gas dynamics], Moscow, Nauka, 1976, 400 p.

11. Bo Yan, Xinwu Zeng, Yuan Li Subsection forward modeling method of blasting stress wave underground. Mathematical Problems in Engineering. 2015, vol. 2015, article 678468. DOI: 10.1155/2015/678468.

12. Vallander S. V. Lektsii po gidroaeromehanike [Lectures on hydroaeromechanics], SaintPetersburg, Izd-vo SPbGU, 2005, 304 p.

13. Litvinenko V. S., Dvoynikov M. V. Methodology for determining the parameters of drilling mode for directional straight sections of well using screw downhole motors. Journal of Mining Institute. 2020, vol. 241, pp. 105—112. [In Russ]. DOI: 10.31897/PMI.2020.1.105.

14. Nguyen Tai Tien, Do N. A., Karasev M. A., Kien D. V., Dias D. Influence of tunnel shape on tunnel lining behavior. Proceedings of the Institution of Civil Engineers. Geotechnical Engineering. 2021, vol. 174, no. 4, pp. 355–371. DOI: 10.1680/jgeen.20.00057.

15. Etkin M. B., Azarkovich A. E. Vzryvnye raboty v energeticheskom i promyshlennom stroitel'stve: Nauchno-prakticheskoe rukovodstvo [Blasting in power-generating and industrial construction. scientific and practical guidance], Moscow, Izd-vo MGGU, 2004, 317 p.

16. Du D., Dias D., Do N. A. Lining performance optimization of sub-rectangular tunnels using the Hyperstatic Reaction Method. Computers and Geotechnics. 2020, vol. 117, article 103279.

17. Oreste P. P., Spagnoli G., Ramos C. A. L., Sebille L. The hyperstatic reaction method for the analysis of the spraryed concrete linings behavior in tunneling. Geotechnical and Geological Engineering. 2018, vol. 36, pp. 2143–2169.

18. Thanh Nguyen Chi, Gospodarikov A. P. Hyperstatic reaction method for calculations of tunnels with horseshoe-shaped cross-section under the impact of earthquakes. Earthquake Engineering and Engineering Vibration. 2020, vol. 19, pp. 179–188. DOI: 10.1007/s11803-0200555-0.

19. Burns S. A., Arora J. S., Balling R., Cheng F. Y., Estes A. C., Foley C. M. Recent advances in optimal structural design. Structural Optimization: Recent Developments and Applications. USA, 2002, 384 p.

20. Naggar H. E., Hinchberger S. D., Hesham M., Naggar E. I. Simplified analysis of seismic in-plane stresses in composite and jointed tunnel linings. Soil Dynamics and Earthquake Engineering. 2008, vol. 28, no. 12, pp. 1063—1077. DOI: 10.1016/j.soildyn.2007.12.001.

21. Nguyen Tai Tien, Karasev M. A. Optimization of geometry design of quasi-rectangular section tunnel by the force criterion. MIAB. Mining Inf. Anal. Bull. 2021, no. 6, pp. 59–71. [In Russ]. DOI: 10.25018/0236_1493_2021_6_0_59.

22. Nguyen Tai Tien, Do N. A., Karasev M. A., Kien D. V., Dias D. Influence of tunnel shape on tunnel lining behavior. ICE Proceedings Geotechnical Engineering. 2021, vol. 174, no. 4, pp. 355—371. DOI: 10.1680/jgeen.20.00057.

23. Wang J. Seismic design of tunnels. Monograph 7, Parsons Brinckerhoff Quade and Douglas Inc. New York, 1993. 159 p.

24. Penzien J., Wu C. Stresses in linings of bored tunnels. Earthquake Engineering & Structural Dynamics. 1998, vol. 27, no. 3, pp. 283—300. DOI: 10.1002/(SICI)1096-9845(199803) 27:3<283::AID-EQE732>3.0.CO;2-T.

25. He S., Chen T., Vennes I., He X., Song D., Chen J., Mitri H. Dynamic modelling of seismic wave propagation due to a remote seismic source: a case study. Rock Mechanics and Rock Engineering. 2020, vol. 53, pp. 5177—5201. DOI: 10.1007/s00603-020-02217-w.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.