Numerical research of effect of stress–strain changes on stability of gas drainage wells in coal–rock mass

The article presents the studies on the effect exerted by high-rate mining of gasbearing coal seams in difficult geological conditions on gas drainage performance in longwalls. The data of mine observations confirm an increase in local gas release from coal–rock mass due to the rise in the reservoir characteristics of rocks under impact of swelling. It is shown that swelling processes also substantially affect stability of gas drainage wells, primarily at intersections of the wells with the layers of weak water-saturated rocks. From the field observations, it is concluded on the necessity of taking into account this influence in the evaluation of gas drainage wells. The article describes the circuit of computer-aided modeling of the stress–strain changes in stratified coal–rock mass with a gas drainage well at different positions of longwall face. The numerical experiments using the finite element method and PLAXIS software application are carried out for the conditions of Kirov Mine, SUEK-Kuzbass. The nonlinear behavior of coal–rock mass deformation is depicted using the Mohr–Coulomb elastoplastic model. The justification is provided for the expedience of correction of gas drainage patterns for coal longwalls which occur in the similar mining conditions as in the presented research.

Keywords: coal–rock mass, roadways, methane, gas drainage wells, stresses, strains, stability, numerical methods, PLAXIS.
For citation:

Blokhin D. I., Zakorshmenniy I. M., Kubrin S. S., Kobylkin A. S., Pozdeev E. E., Pushilin A. N. Numerical research of effect of stress–strain changes on stability of gas drainage wells in coal–rock mass. MIAB. Mining Inf. Anal. Bull. 2023;(11):17-32. [In Russ]. DOI: 10.25018/0236_1493_2023_11_0_17.

Issue number: 11
Year: 2023
Page number: 17-32
ISBN: 0236-1493
UDK: 622.81
DOI: 10.25018/0236_1493_2023_11_0_17
Article receipt date: 05.06.2023
Date of review receipt: 03.08.2023
Date of the editorial board′s decision on the article′s publishing: 10.10.2023
About authors:

D.I. Blokhin1, Cand. Sci. (Eng.), Senior Researcher, e-mail:, ORCID ID: 0000-0002-4652-661X,
I.M. Zakorshmenniy1, Dr. Sci. (Eng.), Leading Researcher, e-mail:, ORCID ID: 0000-0001-9153-673X,
S.S. Kubrin1, Dr. Sci. (Eng.), Head of Laboratory, e-mail:, ORCID ID: 0000-0002-0490-9065,
A.S. Kobylkin1, Cand. Sci. (Eng.), Senior Researcher, e-mail:, ORCID ID: 0000-0002-1512-890X,
E.E. Pozdeev, Head of Division, Department for Digitalization and Automation of the Coal Division, LLC Digital Technologies and Platforms, 115054, Moscow, Russia, e-mail:,
A.N. Pushilin, Senior Researcher, Gersevanov Research Institute of Bases and Underground Structures JSC Research Center of Construction, 109428, Moscow, Russia, e-mail:,
1 Institute of Problems of Comprehensive Exploitation of Mineral Resources of Russian Academy of Sciences, 111020, Moscow, Russia.


For contacts:

D.I. Blokhin, e-mail:


1. Slastunov S. V., Yutyaev E. P., Mazanik E. V., Sadov A. P., Ponizov A. V. Ensuring methane safety of mines on the basis of deep degassing of coal seams in their preparation for intensive development. Ugol'. 2019, no. 7, pp. 42—47. [In Russ]. DOI: 10.18796/0041-5790-2019-7-42-47.

2. Slastunov S. V., Kolikov K. S., Sadov A. P., Khautiev A. M.-B., Komissarov I. A. Safe and high-rate mining of gas-bearing coal with integrated preparative degassing. MIAB. Mining Inf. Anal. Bull. 2023, no. 2, pp. 152—166. [In Russ]. DOI: 10.25018/0236_1493_2023_ 2_0_152.

3. Balovtsev S. V., Skopintseva O. V., Kulikova E. Yu. Hierarchical structure of aerological risks in coal mines. Sustainable Development of Mountain Territories. 2022, vol. 14, no. 2, pp. 276—285. [In Russ]. DOI: 10.21177/1998-4502-2022-14-2-276-285.

4. Balovtsev S. V. Higher rank aerological risks in coal mines. Mining Science and Technology (Russia). 2022, vol. 7, no. 4, pp. 310—319. [In Russ]. DOI: 10.17073/2500-0632-2022-08-18.

5. Zakorshmennyi I. M., Kubrin S. S. Assessment of risks of violations of technological processes due to the ventilation of coal mining. MIAB. Mining Inf. Anal. Bull. 2018, no. S65, pp. 38—46. [In Russ]. DOI: 10.25018/0236-1493-2018-12-65-38-46.

6. Kopylov K. N., Kubrin S. S., Blokhin D. I. The simulation of the excavation sites of coal mines. Mining Goes Digital — Proceedings of the 39th international symposium on Application of Computers and Operations Research in the Mineral Industry. London: Taylor & Francis Group. 2019, pp. 473—480. DOI: 10.1201/9780429320774-54.

7. Shinkevich M. V., Plaksin M. S. Relationship of geomechanics and methane content of mine workings when performing underground mining operations. Bulletin of the Kuzbass State Technical University. 2017, no. 5, pp. 15—24. [In Russ]. DOI: 10.26730/1999-4125-2017-5-15-23.

8. Zakharov V. N., Shlyapin A. V., Trofimov V.A., Filippov Yu.A. Change in stress–strain behavior of coal-rock mass during coal mining. MIAB. Mining Inf. Anal. Bull. 2020, no. 9, pp. 5—24. [In Russ]. DOI: 10.25018/0236-1493-2020-9-0-5-24.

9. Smirnov A. V., Zakharov V. N., Kharchenko A. V. Numerical simulation of the process of heaving rocks in the workings of coal mines. Gornyi Zhurnal. 2017, no. 11, pp. 33—36. [In Russ]. DOI: 10.17580/gzh.2017.11.06.

10. Kazanin O. I., Sidorenko A. A., Ilinets A. A., Vasiliev V. F. Numerical studies of the entries floor heave while using relieve slots in the mine «Taldinskaya-Zapadnaya 2». News of the Tula state university. Sciences of Earth. 2018, no. 3, pp. 179—187. [In Russ].

11. Dzhioeva A. K., Brigida V. S. Spatial non-linearity of methane release dynamics in underground boreholes for sustainable mining. Journal of Mining Institute. 2020, vol. 245, pp. 522—530. [In Russ]. DOI: 10.31897/PMI.2020.5.3.

12. Zhai J., Liu D., Li G., Wang F. Floor failure evolution mechanism for a fully mechanized longwall mining face above a confined aquifer. Advances in Civil Engineering. 2019, vol. 2019, аrticle 8036928. DOI: 10.1155/2019/8036928.

13. Malkowski P., Ostrowski L., Stasica J. Modeling of floor heave in underground roadways in dry and waterlogged conditions. Energies. 2022, vol. 15, no. 12, article 4340. DOI: 10.3390/en15124340.

14. Trubetskoy K. N., Iofis M. A., Esina E. N. Geomechanical service in mining under gasand-dynamic phenomena. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopaemykh. 2015, no. 3, pp. 64—71. [In Russ]. DOI: 10.1134/S1062739115030114.

15. Zaburdyaev V. S., Novikova I. A., Smetanin V. S. Efficiency of degassing of dredging sites during the development of converged coal seams at the Kirov mine (JSC «SUEK-Kuzbass»). MIAB. Mining Inf. Anal. Bull. 2011, no. 10, pp. 13—19. [In Russ].

16. Brigida V. S., Golik V. I., Dmitrak Yu. V., Gabaraev O. Z. Ensuring stability of undermining inclined drainage holes during intensive development of multiple gas-bearing coal layers. Journal of Mining Institute. 2019, vol. 239, pp. 497—501. [In Russ]. DOI: 10.31897/PMI.2019.5.497.

17. Brigida V. S., Golik V. I., Dmitrak Yu. V., Gabaraev O. Z. The impact of situational geomechanical conditions influence to improving of the drainage rock-mass caved. News of the Tula state university. Sciences of Earth. 2019, no. 2, pp. 279—288. [In Russ].

18. Zakharov V. N., Trofimov V. A., Filippov Yu. A., Shlyapin A. V. About degassing of the coal-rocks massif in the roof of the coal seam being worked out. MIAB. Mining Inf. Anal. Bull. 2022, no. 11, pp. 20—36. [In Russ]. DOI: 10.25018/0236_1493_2022_11_0_20.

19. Zhao X., Wang J., Mei Y. Analytical model of wellbore stability of fractured coal seam considering the effect of cleat filler and analysis of influencing factors. Applied Sciences. 2020, vol. 10, no. 3, article 1169. DOI: 10.3390/app10031169.

20. Hawkes C. D. Assessing the mechanical stability of horizontal boreholes in coal. Canadian Geotechnical Journal. 2011, vol. 44, no. 7, pp. 797—813. DOI: 10.1139/t07-021.

21. Trofimov V.A., Kubrin S. S., Filippov Yu.A., Kharitonov I. L. Numerical modeling of stress–strain state for host rock mass and thick gently dipping coal seam after mining completion in extraction panel. MIAB. Mining Inf. Anal. Bull. 2019, no. 8, pp. 42—56. [In Russ]. DOI: 10.25018/0236-1493-2019-08-0-42-56.

22. Brinkgreve R. B. J., Bakker H. L. Non-linear finite element analysis of safety factors. Proceedings of the 7th International Conference on Computer Methods and Advances in Geomechanics, Cairns, Australia, 1991, pp. 1117—1122.

23. Sas I. E., Cherepetskaya E. B., Pavlov I. A. Solving problems in geomechanics: Comparison of the Fidesys strength analysis system and the Plaxis software package. Key Engineering Materials. 2017, vol. 755, pp. 328—332. DOI: 10.4028/

24. Kobylkin S. S., Pugach A. S. Rock burst forecasting technique and selecting a safe coal face advance direction. Mining Science and Technology (Russia). 2022, no. 7(2), pp. 126—136. [In Russ]. DOI: 10.17073/2500-0632-2022-2-126-136.

25. Wongchana P., Jitsangiam P. Experimental investigation and modelling of claystone from Mae Moh Coal Mine, Thailand. Key Engineering Materials. 2020, vol. 841, pp. 155—160. DOI: 10.4028/

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.