Digital model of brake plinth of mine hoist with rubber cable pulling equipment

Modernization of mine hoists by means of replacement of steel cable traction by rubber cable pulling equipment ensures increased capacity, decreased metal intensity and extended life of traction mechanisms. However, this engineering solution involves the change in the parameters of the main assemblies of mine hoists. For this reason, substantiation of designs of these assemblies is the actual basic and applied problem. The authors have reviewed the current mine hoist studies which appear to lack any investigation connected with braking systems for mine hoists with rubber cable pulling equipment. In this connection, toward the safe operation of mine hoists being modernized, it is proposed to discuss possible engineering decisions on braking systems. By estimates, the disc braking systems feature the highest efficiency. For the analysis of the disc brake performance, the method of digital modeling in SolidWorks environment is put forward and used to construct a digital model of the critical component of the braking system—a brake plinth. This digital model simulates braking forces equivalent to actual operating conditions of mine hoists, which allows the stress and stain assessment in the brake plinth. The studies include a series of tests using the proposed digital model, with estimation of maximum stresses versus design variables of the plinth in different operating conditions.

Keywords: mine hoist, digital modeling, disc brake, braking system, brake plinth, rubber cable pulling equipment, rubber cables, digital experiment.
For citation:

Gylymuly S., Kantovich L. I., Tiagalieva Z. A., Belyankina O. V. Digital model of brake plinth of mine hoist with rubber cable pulling equipment. MIAB. Mining Inf. Anal. Bull. 2022;(6):62-76. [In Russ]. DOI: 10.25018/0236_1493_2022_6_0_62.

Issue number: 6
Year: 2022
Page number: 62-76
ISBN: 0236-1493
UDK: 622.673
DOI: 10.25018/0236_1493_2022_6_0_62
Article receipt date: 28.01.2022
Date of review receipt: 24.03.2022
Date of the editorial board′s decision on the article′s publishing: 10.05.2022
About authors:

S. Gylymuly1, Graduate Student, e-mail:, ORCID ID: 0000-0001-5088-1828,
L.I. Kantovich1, Dr. Sci. (Eng.), Professor, e-mail:, ORCID ID: 0000-0003-1438-8010,
Z.A. Tiagalieva1, Graduate Student, e-mail:, ORCID ID: 0000-0001-5447-2693,
O.V. Belyankina1, Cand. Sci. (Eng.), Assistant Professor, e-mail:, ORCID ID: 0000-0002-1506-6526,
1 Mining Institute, National University of Science and Technology «MISiS», 119049, Moscow, Russia.


For contacts:

S. Gylymuly, e-mail:


1. Melnik V. V., Efimov V. I., Korchagina T. V., Popov A. I., Muzafarov G. G. Experience of steeply dipping coal seam mining. MIAB. Mining Inf. Anal. Bull. 2018, no. 11, pp. 18—38. [In Russ]. DOI: 10.25018/0236-1493-2018-11-0-18-38.

2. Pleshko M. S., Pankratenko A. N., Pleshko M. V., Nasonov A. A. Assessment of stressstrain behavior of shaft lining in bottomhole area during sinking by real-time monitoring and computer modeling data. Eurasian Mining. 2021, vol. 35, no 1, pp. 25—30. DOI: 10.17580/ em.2021.01.05.

3. Kolikov K. S., Kaledina N. O., Kobylkin S. S. Mining safety and ecology department: Past, present and future. Gornyi Zhurnal. 2018, no. 3, pp. 21—28. [In Russ]. DOI: 10.17580/ gzh.2018.03.04.

4. Batugin A., Kolikov K., Ivannikov A., Ignatov Y., Krasnoshtanov D. Transformation of the geodynamic hazard manifestation forms in mining areas. 19th International Multidisciplinary Scientific GeoConference SGEM 2019. 2019, vol. 19, book 1.3, pp. 717—724. DOI: 10.5593/ sgem2019/1.3/S03.091.

5. Pavlenko M. V., Barnov N. G., Kuziev D. A., Kenzhabaev K. N., Monzoev M. V. Vibration impact through wells and the technology of degassing of the preparation of low-permeability coal seam. Ugol'. 2020, no. 1, pp. 36—40. [In Russ]. DOI: 10.18796/0041-5790-20201-36-40.

6. Ilin S., Adorska L., Samusia V., Kolosov D., Ilina I. Conceptual bases of intensification of mining operations in mines of Ukraine. Based on monitoring and condition management of mine hoisting systems. E3S Web of Conferences. 2019, vol. 109, article 00030, pp. 1—10. DOI: 10.1051/e3sconf/201910900030.

7. Ilin S. R., Samusya V. I., Kolosov D. L., Ilina I. S., Ilina S. S. Risk-forming dynamic processes in units of mine hoists of vertical shafts. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2018, no. 5, pp. 64—71. DOI: 10.29202/nvngu/2018-5/10.

8. Trifanov G. D., Knyazev A. A., Filatov A. P., Laschuk V. V. Operational experience of mine lifting installations equipped with continuous monitoring systems. Occupational Safety in Industry. 2019, no. 6, pp. 52—58. [In Russ]. DOI: 10.24000/0409-2961-2019-6-52-58.

9. Matsov S. Ya., Gazizullin G. D., Trifanov G. D. Computer systems for protection and monitoring of mine lifting installations. Occupational Safety in Industry. 2016, no. 1, pp. 32—36. [In Russ].

10. Trifanov G. D., Knjazev A. A. Maintenance of safety of operation of mine lifting units by application of digital technologies. Aktual'nye problemy povysheniya effektivnosti i bezopasnosti ekspluatatsii gornoshakhtnogo i neftepromyslovogo oborudovaniya. 2018, vol. 1, pp. 4—11. [In Russ].

11. Surina N. V., Mnatsakanyan V. U. Automated process design system for mining equipment repair. Gornyi Zhurnal. 2019, no. 7, pp. 90—95. [In Russ]. DOI: 10.17580/gzh.2019.07.08.

12. Galkin V. I., Sheshko E. E., Dyachenko V. P. Design parameters of curvilinear sections of belt conveyors in mining. Gornyi Zhurnal. 2018, no. 12, pp. 69—73. [In Russ]. DOI: 10.17580/ gzh.2018.12.14.

13. Fashchilenko V. N., Reshetnyak S. N. Resonant behavior of electric drives of mining machines. Gornyi Zhurnal. 2017, no. 7, pp. 80—83. [In Russ]. DOI: 10.17580/gzh.2017.07.15.

14. Makarov N. V., Makarov V. N., Ugolnikov A. V., Nosyrev M. B. Optimization of parameters of fan units of air cooling devices. Sustainable Development of Mountain Territories. 2021, vol. 13, no. 3, pp. 433—440. [In Russ]. DOI: 10.21177/1998-4502-2021-13-3-433-440.

15. Khoreshok A., Ananiev K., Ermakov A., Kuziev D., Babarykin A. Determination of the rational number of cutters on the outer cutting drums of geokhod. Acta Montanistica Slovaca. 2020, vol. 25, no. 1, pp. 70—80. DOI: 10.46544/AMS.v25i1.7.

16. Gubanov S., Petsyk S., Komissarov A. Simulation of stresses and contact surfaces of disk rolling cutters with the rock when sinking in mixed soils. E3S Web of Conferences. 2020, vol. 177, article 03008, pp. 1—5. DOI: 10.1051/e3sconf/202017703008.

17. Dagang W., Ruixin W., Jun Z. Dynamic brake characteristics of disc brake during emergency braking of the kilometer deep coal mine hoist. Advances in Mechanical Engineering. 2020, vol. 12, no. 5, pp. 1—23. DOI: 10.1177/1687814020918097.

18. Guiyun X., Di S., Di Z., Xiaoguang Z., Shikang S. A novel mechanical design of disc brakes for fault diagnosis and monitoring positive braking pressure in mine hoist. Advances in Mechanical Engineering. 2019, vol. 11, no. 4, pp. 1—16. DOI: 10.1177/1687814019842494.

19. Rakhutin M., Simba N., Khoroshavin S. Analysis of the dependence of the stressed state of the tracked track of a career excavator from an angle slope. E3S Web of Conferences. 2020, vol. 177, article 03015, pp. 2—5. DOI: 10.1051/e3sconf/202017703015.

20. Snitko S. A., Yakovchenko A. V., Gorbatyuk S. M. Accounting method for residual technological stresses in modeling the stress-deformed state of a railway wheel disk. Report 2. Izvestiya. Ferrous Metallurgy. 2021, no. 7, vol. 64, pp. 477—483. [In Russ]. DOI: 10.17073/03680797-2021-7-477-483.

21. Rutkovsky М. А. Simulation of stress-strain state drum mine winders. Contemporary Innovation Technique of the Engineering Personnel Training for the Mining and Transport Industry. 2014, no. 1(1), pp. 197—205. [In Russ].

22. Zabolotnyi K., Panchenko O., Zhupiiev O., Haddad J. S. Justification of the algorithm for selecting the parameters of the elastic lining of the drums of mine hoisting machines. E3S Web of Conferences. 2019, vol. 123, article 01021, pp. 1—10. DOI: 10.1051/e3sconf/201912301021.

23. Perekutnev V. E., Zotov V. V. Modeling drive wheels of hoisting machines with rubber cables. MIAB. Mining Inf. Anal. Bull. 2020, no. 6, pp. 105—114. [In Russ]. DOI: 10.25018/02361493-2020-6-0-105-114.

24. Vagin V. S., Kurochkin A. I., Karpesh A. A. Compact Mobile Sinking Hoists Creation Prospects. Conference on Industrial Engineering ICIE 2017. 2017, vol. 206, pp. 21—24. DOI: 10.1016/j.proeng.2017.10.431.

25. Perekutnev V. E., Zotov V. V. Comparative assessment of rubber steel cables for vertical mine hoists. MIAB. Mining Inf. Anal. Bull. 2020, no. 7, pp. 85—93. [In Russ]. DOI: 10.25018/0236-1493-2020-7-0-85-93.

26. Kurochkin A. I., Filatov A. M., Podbolotov S. V. Optimization of dynamic processes of driving lifting intalations equipped disk braking devices. Natural and technical sciences. 2020, no. 3(141), pp. 212—214. [In Russ].

27. Kurochkin A., Vagin V., Karpesh A., Dyorina N. Control system for electrohydraulic drive of a mobile sinking hoisting plant. MATEC Web of Conferences. 2018, vol. 224, article 02009, pp. 1—4. DOI: 10.1051/matecconf/201822402009.

28. Zotov V. V., Kuziev D. A., Ryzhov I. M. Main trends of improving the mine hoist engineering performance standards. Russian Mining Industry. 2014, no. 2(114), pp. 111—112. [In Russ].

29. Belmas I., Kogut P., Kolosov D., Samusia V., Onyshchenko S. Rigidity of elastic shell of rubber-cable belt during displacement of cables relatively to drum. E3S Web of Conferences. 2019, vol. 109, article 00005, pp. 1—14. DOI: 10.1051/e3sconf/201910900005.

30. Kolosov D. L. Stress state analysis of the rubber-rope cable at complicated contact surface with a hoist actuator. Naukovi prati Donetsk National Technical University. Series: Girnichoelectro-mechanical. 2012, no. 2(24), pp. 97—104.

31. NKMZ factory, available at: (accessed 21.12.2022).

32. ABB company, available at: (accessed 21.12.2022).

33. Zabolotnyi K. Development of a model of contact shoe brake-drum interaction in the context of a mine hoisting machine. Mining of Mineral Deposits. 2017, vol. 11, no. 4, pp. 38—45. DOI: 10.15407/mining11.04.038.

34. Reshetnyak S., Maksimenko Y., Zakharova A. Investigation of the electric drive system of the lifting unit with parallel coordinate correction. E3S Web of Conferences. 2021, vol. 315, article 03028, pp. 1—5. DOI: 10.1051/e3sconf/202131503028.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.