Demineralization of Kharanor lignite

At the present time, the mining industry faces a challenge connected with maintenance of competitive ability of mines and mining products in the conditions of continuously increasing percent of hard-to-recover reserves. This is dead valid for the coal mining industry. The main requirement imposed on various coal grades reduces to the increase in organic part and decreased content of harmful impurities and inert substances and moisture, which is achieved by means of dressing. For some time past, low-ash coal enjoys wider demand but traditional reduction of ash content of coal is associated with much difficulty due to fine impregnation of impurities in coal. The problem can be solved based on chemical removal of mineral impurities—chemical demineralization. This article describes demineralization results obtained on lignite from Kharanor deposit using different concentrations of various agents (hydrochloric/phosphoric/sulfuric/nitric/acetic/citric acids, hydrogen peroxide, potassium permanganate). It is shown that almost all selected chemical agents reduce the ash content of the test samples, and the highest decrease in the ash content is observed with hydrochloric acid taken at the concentration of 10 %. Furthermore, the authors assessed the change in organic mass by the change in the humic acid yield and combustion heat. All test chemicals, except for potassium permanganate, have oxidizing action on the organic part of lignite, which fits with the second stage of oxidation. By the test indicators in the aggregate, the highest reduction in ash content at the lowest variation in the organic part of coal is demonstrated by hydrochloric acid at the concentration of 1%.

Keywords: solid fuel, lignite, demineralization, ash content, processing, oxidation, organic acids, inorganic acids, humic acids.
For citation:

Moskalenko T. V., Mikheev V. A., Vorsina E. V. Demineralization of Kharanor lignite. MIAB. Mining Inf. Anal. Bull. 2021;(12-1):148—158. [In Russ]. DOI: 10.25018/0236_1493_ 2021_121_0_148.

Acknowledgements:
Issue number: 12
Year: 2021
Page number: 148-158
ISBN: 0236-1493
UDK: 622.12 : 622.332(571.53/55)
DOI: 10.25018/0236_1493_2021_121_0_148
Article receipt date: 18.07.2021
Date of review receipt: 29.10.2021
Date of the editorial board′s decision on the article′s publishing: 10.11.2021
About authors:

Moskalenko T. V.1, Cand. Sci. (Eng.), Senior Research Worker of the Laboratory of Complex Use of Coals, labkiy@mail.ru;
Mikheev V. A.1, Cand. Sci. (Eng.), Leading Research Worker, acting Head of the Laboratory of Complex Use of Coals;
Vorsina E. V.1, Cand. Sci. (Eng.), Senior Research Worker of the Laboratory of Complex Use of Coals;
1 N. V. Chersky Mining Institute of the North, Siberian Branch, Russian Academy of Sciences, Yakutsk, Russia, Lenin Ave, 43, labkiy@mail.ru.

 

For contacts:

Moskalenko T. V., е-mail: labkiy@mail.ru

Bibliography:

1. Energeticheskaya strategiya Rossii na period do 2035 goda [Russia’s Energy strategy for the period up to 2035]: utverzhdena rasporyazheniem Pravitel’stva RF ot 9 iyunya 2020 g. no. 1523-r. Dostup iz sprav.-pravovoi sistemy «Konsul’tantPlyus».

2. Cheban A. Yu., Khrunina N. P. Tekhnika i tekhnologii razrabotki ugol’nykh razrezov Priamur’ya i perspektivy ikh razvitiya. Marksheideriya i nedropol’zovanie. 2015, no. 1, pp. 19—21. [In Russ].

3. Mittalab S., Pathaka S., Dhawana H., Upadhyayula S. A machine learning approach to improve ignition properties of high-ash Indian coals by solvent extraction and coal blending. Chemical Engineering Journal, 2021, June, Vol. 413, no. 1, 127385. DOI: 10.1016/j.cej.2020.127385.

4. Ruban V. A. Sovremennoe sostoyanie protsessov obogashcheniya uglei. Khimiya tverdogo topliva. 2005, no. 1, pp. 101—106. [In Russ].

5. Golovin G. S., Bychev M. I., Moskalenko T. V., Petrova G. I., Mikheev V. A. Ugol’naya baza Respubliki Sakha (Yakutiya) i osnovnye napravleniya ee ispol’zovaniya. Khimiya tverdogo topliva. 2007, no. 2, pp. 3—9. [In Russ].

6. Kuznetsov P. N., Kolesnikova S. M., Kamensky E. S., Kuznetsova L. I. Influence of mineral components on reactionary ability of brown coal at steam gasification in the conditions of a high pressure. Journal of Siberian Federal University. Engineering & Technologies. 2013, no. 1, Vol. 6, pp. 3—14. [In Russ].

7. Jing Z., Balucan R. D., Underschultz J., Zou C., Steel K. М. Chemical stimulation for enhancing coal seam permeability: Laboratory study into permeability variation and coal structure examination. International Journal of Coal Geology, 15 February 2020, Vol. 219, 103375. DOI: 10.1016/j.coal.2019.103375.

8. Sriramojua K., Kumarb D., Majumdarc S., Dashd P. S., Sheec D., Banerjeee R. Sustainability of coal mines: Separation of clean coal from the fine-coal rejects by ultra-fine grinding and density-gradient-centrifugation. Powder Technology, May 2021, Vol. 383, pp. 356—370. DOI: 10.1016/j.powtec.2021.01.061.

9. Steel K. M., Patrick J. W. The production of ultra clean coal by chemical demineralization. Fuel and Energy Abstracts, July 2002, Vol. 43(4), pp. 238. DOI: 10.1016/ S0140-6701(02)86087-8.

10. Gindulin I. K., Yur’ev Yu. L., Erankin S. V., Petrov L. A. The research process of active charcoal oxidation by air oxygen. (Issledovanie protsessa okisleniya aktivnogo drevesnogo uglya kislorodom vozdukha). Khimiya rastitel’nogo syr’ya. 2007, no. 4, pp. 117—120. [In Russ].

11. Karipova G. Z., Satpaeva Z. B., Fazylov S. D., Tateyeva A. B., Karimova A. B. Study of influence of modifying affecting on extraction exit of bituminous substances of brown coal. Uspekhi khimii i khimicheskoi tekhnologii. 2016, Vol. XXX, no. 9, pp. 95—96.

12. Moskalenko T. V., Mikheev V. A. Okislitel’noe vozdeistvie na kangalasskii buryi ugol’ dlya povysheniya vykhoda guminovykh kislot. MIAB. Mining Inf. Anal. Bull. 2015, no. 7, Special edition 30, pp. 220—227. [In Russ].

13. Moskalenko T. V., Mikheev V. A., Vorsina E. V. Povyshenie izvlecheniya guminovykh veshchestv iz burogo uglya Kharanorskogo mestorozhdeniya napravlennym okisleniem. Sovremennye naukoemkie tekhnologii. 2016, no. 2 (part 3), pp. 435—440. URL: http://www. top-technologies.ru/ru/article/view?id=35648 (accessed 01.07.2021). [In Russ].

14. Usanbaev N. H., Azimov A. H., Kholov I. A. Effect humic acid oxidized Аngren coal by nitric acid in presence of acetic acid on calcium phosphate. Universum: tekhnicheskie nauki: elektronnyi nauchnyi zhurnal. 2017, no. 3 (36). URL: https://7universum.com/ru/tech/ archive /item/4501 (accessed 01.07.2021). [In Russ].

15. Ugol’. Metod opredeleniya mineral’nogo veshchestva, GOST 29086-91 (ISО 602— 83) [Coal. Determination of mineral matter, State Standart 29086-91], Moscow, Standarty, 1991, 8 p. [In Russ].

16. Glushchenko I. M. Teoreticheskiye osnovy tekhnologii goryuchikh iskopayemykh [Theoretical bases of technology of fossil fuels], Moscow, Metallurgiya, 1990, 296 p. [In Russ].

17. Khimiya i pererabotka uglya [Chemistry and coal processing] V. G. Lipovich, G. A. Kalabin, I. V. Kalechits i dr. Moscow, Khimiya, 1988, 336 p. [In Russ].

18. Sabar M. A., Ali M. I., Fatima N., Malik A. Y., Jamal A., Liaquat R., He H., Liu F.-J., Guo H., Urynowicz M., Huang, Z. Evaluation of humic acids produced from Pakistani subbituminous coal by chemical and fungal treatments. Fuel, 2020, 15 October, Vol. 278, 118301. DOI: 10.1016/j.fuel.2020.118301.

19. Karavayev N. M. Khimicheskaya pererabotka topliv (khimiya i tekhnologiya) [Chemical processing of fuels (chemistry and technology)], Moscow, Nauka, 1965, 358 p. [In Russ].

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.