Effect of composition of metal-bearing surface modifiers for sulfide minerals of base heavy metals in copper–zinc ore flotation

Copper demand increases substantially yearly mainly owing to the appearance of renewable energy sources and electromobiles. Russia holds the world’s fourth resources of copper after Chile, Australia and Peru. Thanks to the properties and quantity, copper is widely used as an independent product and in alloys. Therefore, the mining industry has to process rebellious ore to produce increasingly more copper. Rebellious ore processing requires new modifiers, collectors, frothers and flowsheets of flotation. This article presents the research results on the influence of metal-bearing modifiers on flotation of copper, zinc and pyrite sulfides present in the composition of coper–zinc–pyrite ore from a Ural deposit. The modifying agents in flotation of copper, zinc and pyrite sulfides were iron, zinc and copper vitriols, and their binary and ternary mixtures. Dosing of the mixtures in flotation was performed using a 4-simplex. From the results on the kinetics of flotation, the patterns of materials in the concentrate were calculated per fractions of floatability. It is shown that the use of the mixture of iron and copper vitriols in flotation allows the increased recovery of copper and zinc. It is also proved that the use of this mixture of the modifiers activates flotation of sphalerite.

Keywords: copper–zinc–pyrite ore, modifier, flotation, reagents, copper sulfate, zinc sulfate, iron sulfate, recovery, copper, zinc.
For citation:

Phyoe Kyaw Kyaw, Kyaw Zaya Ya, Goryachev B. E. Effect of composition of metal-bearing surface modifiers for sulfide minerals of base heavy metals in copper–zinc ore flotation. MIAB. Mining Inf. Anal. Bull. 2023;(11):128-142. [In Russ]. DOI: 10.25018/0236_ 1493_2023_11_0_128.

Acknowledgements:
Issue number: 11
Year: 2023
Page number: 128-142
ISBN: 0236-1493
UDK: 622.765
DOI: 10.25018/0236_1493_2023_11_0_128
Article receipt date: 12.04.2023
Date of review receipt: 27.07.2023
Date of the editorial board′s decision on the article′s publishing: 10.10.2023
About authors:

Phyoe Kyaw Kyaw1, Graduate Student, e-mail: bophyo1831993@gmail.com, ORCID ID: 0000-0003-3084-6771,
Kyaw Zay Ya1, Cand. Sci. (Eng.), Internship, Department of Mineral Processing, e-mail: kokyawgyi49@gmail.com, ORCID ID: 0000-0003-4364-9574,
B.E. Goryachev1, Dr. Sci. (Eng.), Professor, e-mail: beg@misis.ru,
1 Mining Institute, National University of Science and Technology «MISiS», 119049, Moscow, Russia.

 

For contacts:

Phyoe Kyaw Kyaw, e-mail: bophyo1831993@gmail.com; B.E. Goryachev, e-mail: beg@misis.ru.

Bibliography:

1. Litvinenko V. S., Tsvetkov P. S., Molodtsov K. V. The social and market mechanism of sustainable development of public companies in the mineral resource sector. Eurasian Mining. 2020, vol. 1, pp. 36—41. DOI: 10.17580/em.2020.01.07.

2. Aleksandrova T., Nikolaeva N., Afanasova A., Romashev A., Kuznetsov V. Selective disintegration justification based on the mineralogical and technological features of the polymetallic ores. Minerals. 2021, vol. 11, no. 8, article 851. DOI: 10.3390/min11080851.

3. Lisin E., Kurdiukova G. Energy supply system development management mechanisms from the standpoint of efficient use of energy resources. IOP Conference Series. Earth and Environmental Science. 2021, vol. 666, no. 6, article 062090. DOI: 10.1088/1755-1315/666/6/062090.

4. Rogalev N., Sukhareva Y., Mentel G., Broz˙yna J. Economic approaches for improving electricity market. Terra Economicus. 2018, vol. 16, no. 2, pp. 140—149. DOI: 10.23683/2073-6606-2018-16-2-140-149.

5. Rybak J., Adigamov A., Kongar-Syuryun Ch., Khayrutdinov M., Tyulyaeva Y. Renewable resource technologies in mining and metallurgical enterprises providing environmental safety. Minerals. 2021, vol. 11, no. 10, article 1145. DOI 10.3390/min11101145.

6. Khayrutdinov M. M., Kaung P. A., Chzho Z. Ya., Tyulyaeva Yu. S. Ensuring environmental safety in the implementation of the resource-renewable technologies. Occupational Safety in Industry. 2022, no. 5, pp. 57—62. [In Russ]. DOI: 10.24000/0409-2961-2022-5-57-62.

7. Aleksandrova T. N., Chanturiya A. V. Ore preparation process selection for ferruginous quartzites based on simulation modeling. Obogashchenie Rud. 2023, no. 1, pp. 3—9. DOI: 10.17580/or.2023.01.01.

8. Ivannikov A., Chumakov A., Prischepov V., Melekhina K. Express determination of the grain size of nickel-containing minerals in ore material. Materials Today: Proceedings. 2021, vol. 38, part 4, pp. 2059—2062. DOI: 10.1016/j.matpr.2020.10.141.

9. Clout J. M. F., Manuel J. R. Mineralogical, chemical, and physical metallurgical characteristics of iron ore. Iron Ore: Mineralogy, Processing and Environmental Sustainability. Chapter 2. 2021, pp. 59—108. DOI: 10.1016/B978-0-12-820226-5.00012-4.

10. Chumakov A., Prischepov V., Melekhina K., Ivannikov A. Improving the control system of concentration plants based on express control of dissemination of magnetic minerals. IOP Conference Series. Earth and Environmental Science. 2021, vol. 684, no. 1, article 012005. DOI: 10.1088/1755-1315/684/1/012005.

11. Melekhina K. A., Ananyev P. P., Plotnikova A. V., Timofeev A. S., Shestak S. A. Modeling and optimization of complex ore pretreatment by disintegration in autogenous mills. MIAB. Mining Inf. Anal. Bull. 2020, no. 10, pp. 95—105. [In Russ]. DOI: 10.25018/0236-1493-202010-0-95-105.

12. Kuskov V. B., Lvov V. V., Yushina T. I. Increasing the recovery ratio of iron ores in the course of preparation and processing. CIS Iron and Steel Review. 2021, vol. 21, no. 1, pp. 4—8. DOI: 10.17580/cisisr.2021.01.01.

13. Pelevin A. E. Using the results of the phase composition of magnetite ore to predict the output of the concentrate. MIAB. Mining Inf. Anal. Bull. 2022, no. 5-1, pp. 131—144. [In Russ]. DOI: 10.25018/0236_1493_2022_51_0_131.

14. Kuznetsov V. V., Aleksandrova T. N. Development of methods for determining the floatability of minerals for effective design of flotation technology. MIAB. Mining Inf. Anal. Bull. 2022, no. 10-1, pp. 145—154. [In Russ]. DOI: 10.25018/0236_1493_2022_101_0_145.

15. Yushina T. I., Chanturia E. L., Dumov A. M., Myaskov A. V. Modern trends in technical progress in the processing of iron ores. Gornyi Zhurnal. 2021, no. 11, pp. 75—83. [In Russ]. DOI: 10.17580/gzh.2021.11.10.

16. Jankovic A. Comminution and classification technologies of iron ore. Iron Ore: Mineralogy, Processing and Environmental Sustainability. Chapter 8. 2021, pp. 269—308. DOI: 10.1016/B978-0-12-820226-5.00013-6.

17. Mitrofanov S. I. Enrichment of copper-zinc-pyrite ores of the Urals. Tsvetnye Metally. 1977, no. 1, pp. 53—56. [In Russ].

18. Bocharov V. A., Ignatkina V. A. Tekhnologiya obogascheniya poleznykh iskopaemykh. T. 1. Mineral'no-syr'evaya baza poleznykh iskopaemykh. Obogaschenie rud tsvetnykh metallov, rud i rossypey redkikh metallov [Technology of mineral processing. Vol. 1. Mineral resource base of minerals. Enrichment of ores of non-ferrous metals, ores and placers of rare metals], Moscow, Ruda i metally, 2007, pp. 156—170. [In Russ].

19. Bocharov V. A., Ryskin M. Ya., Pospelov N. D. Development of technology for processing copper-zinc ores of the Urals. Tsvetnye Metally. 1979, no. 10, pp. 105—107. [In Russ].

20. Bocharov V. А., Ignatkina V. A., Abrytin D. V., Kayumov А. А., Kayumova V. R. (Korzh). Effect of sulfoxide-based modifiers on sulfide mineral floatability and on production data of ore flotation. MIAB. Mining Inf. Anal. Bull. 2022, no. 12, pp. 20—33. [In Russ]. DOI: 10.25 018/0236_1493_2022_12_0_20.

21. Štirbanović Z. The effect of degree of liberation on copper recovery from copper-pyrite ore by flotation. Separation Science and Technology. 2020, vol. 55, no. 17, pp. 3260—3273. DOI: 10.1080/01496395.2019.1676260.

22. Marsden J. O. Technological innovation and sustainable competitive advantage in the copper industry — Real or imaginary? IMPC 2018, 29th International Mineral Processing Congress. Moscow, 2019, pp. 23—21.

23. Shekhirev D. V. Method for calculating the distribution of material by floatability. Obogashchenie Rud. 2022, no. 4, pp. 27—34. [In Russ]. DOI: 10.17580/or.2022.04.05.

24. Shekhirev D. V., Smailov B. B. Kinetics of extraction of particles of different mineral composition during flotation of lead-zinc ore. Obogashchenie Rud. 2016, no. 2, pp. 20—26. [In Russ]. DOI: 10.17580/or.2016.02.04.

25. Naing Lin Oo. Povyshenie selektivnosti flotatsii kolchedannykh medno-tsinkovykh rud s ispol'zovaniem modifikatorov flotatsii pirita na osnove soedineniy zheleza (II) [Increase in the selectivity of flotation of pyrite copper-zinc ores using pyrite flotation modifiers based on iron (II) compounds], Candidate’s thesis, Moscow, MISiS, 2015, p. 27, available at: https://misis. ru/files/3192/Naing_avtoreferat.doc.

26. Kyaw Zay Ya Povyshenie selektivnosti flotatsii kolchedannykh medno-tsinkovykh rud s ispol'zovaniem modifikatorov flotatsii sfalerita na osnove soedineniy zheleza (II), medi (II) i tsinka [Improving the selectivity of flotation of pyrite copper-zinc ores using sphalerite flotation modifiers based on iron (II), copper (II) and zinc compounds], Candidate’s thesis, Moscow, MISiS, 2018, p. 26, available at: https://misis.ru/files/9461/Chgo_AR.pdf.

27. Kyaw Zay Ya, Goryachev B. E., Nikolaev A. A. Kinetika flotatsii sfalerita flotatsionnoy krupnosti butilovym ditiofosfatom natriya. Nauchnye osnovy i praktika pererabotki rud i tekhnogennogo syr'ya [Kinetics of flotation of sphalerite of flotation size with sodium butyl dithiophosphate. Scientific foundations and practice of processing ores and technogenic raw materials], Moscow, IPKON RAN, 2015, pp. 336—338.

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.