Bibliography: 1. Mamonov S. V., Dresvyankina T. P., Ziyatdinov S. V., Ershov A. A. Technological solutions for processing copper and copper-zinc ores of the pyrite deposit of the Urals. Globus: geologiya i biznes. 2020, no. 3 (62), pp. 140—144. [In Russ].
2. Chanturiya V. A., Bocharov V. A. Modern state and basic ways of technology development of complex processing of non-ferrous mineral raw materials. Tsvetnye Metally. 2016, no. 11, pp. 11—18. [In Russ]. DOI: 10.17580/tsm.2016.11.01.
3. Vasileva A. A., Boduen A. Y. Mineralogical features and processing of copper zinc-containing concentrates. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2023, vol. 334, no. 3, pp. 61—72. [In Russ]. DOI: 10.18799/24131830/2023/3/3956.
4. Kyaw Z. Y., Tiagalieva Z. A., Htet Z. O, Phyo K. K. Improvement of reagent flotation modes of sphalerite and pyrite from deposits of copper-zinc pyrite, polymetallic copper-zinc pyrite and polymetallic ores. IOP Conference Series. Earth and Environmental Science. 2021, vol. 942, no. 1, article 012004. DOI: 10.1088/1755-1315/942/1/012004.
5. Chanturiya V. A. Innovated processes in refinement technologies for raw materials of complex minerals. MIAB. Mining Inf. Anal. Bull. 2009, no. 15, pp. 9—25. [In Russ].
6. Mu Y., Peng Y. Selectively depress copper-activated pyrite in copper flotation at slightly alkaline pH. Mining Metallurgy & Exploration. 2021, vol. 38, pp. 751—762. DOI: 10.1007/ s42461-021-00393-z.
7. Naing Lin U Povyshenie selektivnosti flotatsii kolchedannykh medno-tsinkovykh rud s ispol'zovaniem modifikatorov flotatsii pirita na osnove soedineniy zheleza (II) [Increasing the selectivity of flotation of pyrite copper-zinc ores using pyrite flotation modifiers based on iron (II) compounds], Candidate’s thesis, Moscow, NITU «MISiS», 2015, 27 p.
8. Goryachev B. E., Naing Lin Oo, Nikolaev A. A., Polyakova Y. N. Features of the influence of copper, zinc, and iron cations on the floatability of pyrite from one of the copper-zinc deposits of the Urals. Tsvetnye Metally. 2015, no. 1, pp. 12—18. [In Russ].
9. Chzho Zay Yaa Povyshenie selektivnosti flotatsii kolchedannykh medno-tsinkovykh rud s ispol'zovaniem modifikatorov flotatsii sfalerita na osnove soedineniy zheleza (II), medi (II) i tsinka [Increasing the selectivity of flotation of pyrite copper-zinc ores using sphalerite flotation modifiers based on iron (II), copper (II) and zinc compounds], Candidate’s thesis, Moscow, NITU «MISiS»,, 2018, 26 p.
10. Zhao Cao, Xumeng Chen, Yongjun Peng The role of sodium sulfide in the flotation of pyrite depressed in chalcopyrite flotation. Minerals Engineering. 2018, vol. 119, pp. 93—98. DOI: 10.1016/j.mineng.2018.01.029.
11. Kyaw Zay Ya, Htet Zaw Oo, Shekhirev D. V., Goryachev B. E. The effect of ferrous sulfate, sodium sulfide and their mixtures on the flotation of sphalerite in the alkaline medium. Sustainable Development of Mountain Territories. 2023, vol. 15, no. 1, pp. 122—133. [In Russ]. DOI: 10.21177/1998-4502-2023-15-1-122-133.
12. Zavarukhina E. A., Orekhova N. N. Effects of additional collecting agent on selectivity of flotation of copper and zinc sulfides. MIAB. Mining Inf. Anal. Bull. 2017, no. 3, pp. 305—311. [In Russ].
13. Yufan Mua, Yongjun Peng, Lauten R. A. The depression of pyrite in selective flotation by different reagent systems. A literature review. Minerals Engineering. 2016, vol. 96-97, pp. 143—156. DOI: 10.1016/j.mineng.2016.06.018.
14. Okafor F. O., Oguaghamba O. A. Procedure for optimization using Scheffe's models. Journal of Engineering Science and Application (JESA). 2009, vol. 7, no. 1, pp. 36—47.
15. Duangjit S., Mehr L. M., Kumpugdee-Vollrath M., Ngawhirunpat T. Role of simplex lattice statistical design in the formulation and optimization of microemulsions for transdermal delivery. Biological & Pharmaceutical Bulletin. 2014, vol. 37, no. 12, pp. 1948—1957.
16. Oguaghamba O. A., Mama B. O. Generalized Scheffe’s second-degree mathematical methods approach in engineering mixture design. Conference paper: 16th International Conference and Annual General Meeting, Nigerian Institute of Civil Engineers. 2018, no. 6, pp. 32—44.
17. Shekhirev D. V. Method of calculating the distribution of material by floatability. Obogashchenie Rud. 2022, no. 4, pp. 27—34. [In Russ]. DOI: 10.17580/or.2022.04.05.
18. Goryachev B. E., Zho Z. Ya., Nikolaev A. A. Investigation of the influence of copper, zinc, and iron sulfates on the flotation of sphalerite by sulfhydryl collectors. Tsvetnye Metally. 2017, no. 3, pp. 7—12. [In Russ]. DOI: 10.17580/tsm.2017.03.01.
19. Goryachev B. E., Nikolaev A. A., Il’ina E. Yu. Analysis of flotation kinetics of particles with the controllable hydrophobic behavior. Journal of Mining Science. 2010, vol. 46, no. 1, pp. 72—77. DOI: 10.1007/s10913-010-0010-0.
20. Beloglazov I. N. Equation of the kinetics of the flotation process. Journal of Mining Institute. 2008, vol. 177, pp. 129—132. [In Russ].
21. Xiangning Bu, Linhan Ge, Yaoli Peng, Chao Ni Kinetics of flotation. Order of process, rate constant distribution and ultimate recovery. Journal of Physicochemical Problems of Mineral Processing. 2017, vol. 53, no. 1, pp. 342—365. DOI: 10.5277/ppmp170128.
22. Saroj K. S., Nikkam S., Atul K. V. Performance evaluation of basic flotation kinetic models using advanced statistical techniques. International Journal of Coal Preparation and Utilization. 2019, vol. 39, no. 2, pp. 65—87. DOI: 10.1080/19392699.2017.1302436.