Dynamic model of electromagnetic hammer for crushing oversized rocks

One of the trends in advancement of percussive machines for crushing oversized rocks is the use of electromagnetic hammers as attached implements. The benefit of equipment powered by energy of magnetic field is the structural simplicity and operational reliability in different climatic conditions, including the Far North, as well as the comparatively high efficiency of impact energy transmission. A feature of electromagnetic hammers is the transient behavior, which complicates the rational selection of their basic design parameters. The recent design methods are approximate and mostly use static approaches. The relevance of the present research is defined by the promising application of the electromagnetic hammers in crushing oversized rocks, and by the required improvement of their rational design methods. This article describes development of a dynamic simulation model of an electromagnetic hammer with the piston position coordinate control. The dynamic model of the electromagnetic hammer is created using the structural modeling techniques in Matlab Simulink, with some numerical methods involved. In calculation of complex electromechanical processes, the model enables simultaneous analysis of operation of all hammer subsystems in time and in space, and allows just-in-time adjustment of the main structural parameters of the hammer, which improves the design quality. The quantification of the simulation modeling results is presented. It is emphasized that it is expedient to implement adjustment of the kinetic energy of the hammer by its piston position during the power stroke.

Keywords: rock, oversize crushing, electromagnetic hammer, rational design, structural modeling methods, numerical method, magnetic field, dynamic simulation model, kinetic energy.
For citation:

Neyman L. A., Neyman V. Yu. Dynamic model of electromagnetic hammer for crushing oversized rocks. MIAB. Mining Inf. Anal. Bull. 2025;(2):145-156. [In Russ]. DOI: 10.25018/0236_1493_2025_2_0_145.

Acknowledgements:
Issue number: 2
Year: 2025
Page number: 145-156
ISBN: 0236-1493
UDK: 621.313.282
DOI: 10.25018/0236_1493_2025_2_0_145
Article receipt date: 01.07.2024
Date of review receipt: 19.08.2024
Date of the editorial board′s decision on the article′s publishing: 10.01.2025
About authors:

L.A. Neyman1, Dr. Sci. (Eng.), Professor, e-mail: neyman31@gmail.com, ORCID ID: 0000-0002-3442-6531,
V.Yu. Neyman1, Dr. Sci. (Eng.), Head of Chair, e-mail: nv_nstu@mail.ru, ORCID ID: 0000-0002-8433-1610,
1 Novosibirsk State Technical University, Novosibirsk, 630073, Russia.

 

For contacts:

V.Yu. Neyman, e-mail: nv_nstu@mail.ru.

Bibliography:

1. Zhabin A. B., Kerimov Z. E. Analysis of research results on impact machines. Mining Equipment and Electromechanics. 2020, no. 3(149), pp. 49—54. [In Russ]. DOI: 10.26730/1816-4528-2020-3-49-54.

2. Yungmejster D. A., Brichkin V. N., Isaev A. I. Design and technological parameters of an air hammer for cutting oversized items. Obogashchenie Rud. 2019, no. 2, pp. 3—7. [In Russ]. DOI: 10.17580/ or.2019.02.01.

3. Rempel D., Antonucci A., Barr A., Cooper M. R., Martin B., Neitzel R. L. Pneumatic rock drill vs. electric rotary hammer drill: Productivity, vibration, dust, and noise when drilling 199 into concrete. Applied Ergonomics. 2019, vol. 74, pp. 31—36. DOI: 10.1016/j. apergo.2018.08.005.

4. Aldannawy H., Rouabhi A., Gerbaud L. Percussive drilling: Experimental and numerical investigations. Rock Mechanics and Rock Engineering. 2022, vol. 55, no. 3, pp. 1555—1570. DOI: 10.1007/ s00603-021-02707-5.

5. Edygenov E. K. Prospects for the development of mechanical methods for non-explosive destruction of rocks. Complex Use of Mineral Resources. 2018, no. 4(307), pp. 6—10. [In Russ]. DOI: 10.31643/2018/6445.24.

6. Dmitrak Yu. V., Atrushkevich V. A., Kubrin S. S., Determination of the energy of shock pulses in the process of grinding rocks for mills of various types. Sustainable Development of Mountain Territories. 2022, vol. 14, no. 3(53), pp. 468—478. [In Russ]. DOI: 10.21177/1998-4502-2022-14-3-468-478.

7. Zhabin A. B., Lavit I. M., Kerimov Z. E. Results of studies of the interaction of the striker and the tool during impact destruction of rocks. Mining Equipment and Electromechanics. 2021, no. 3(155), pp. 48—53. [In Russ]. DOI: 10.26730/1816-4528-2021-3-48-53.

8. Shcherbakov I. P., Vettegren' V. I., Mamalimov R. I. Mechanism of rock destruction under the influence of shock waves. Physics of the Earth. 2020, no. 5, pp. 23—35. [In Russ]. DOI: 10.31857/ S0002333720050099.

9. Gumenyuk V., Dobroborsky B., Gumenyuk O., Krupyshev M. Providing high speed drilling of boreholes with portable pneumatic rock drills in emergency situations. IOP Conference Series: Materials Science and Engineering. 2019, vol. 666, no. 1, article 012094. DOI: 10 .1088/1757−899X/666/1/012094.

10. Redelin R. A., Kamanin Y. N., Panichkin A. V. Designing hydraulic impact devices for lowtemperature operation. Journal of Physics. Conference Series. 2021, vol. 2096, no. 1, article 012005. DOI: 10.1088/1742-6596/2096/1/012005.

11. Lupa S. I., Gagnon M., Muntean S., Abdul-Nour G. The impact of water hammer on hydraulic power units. Energies. 2022, vol. 15, no. 4, article 1526. DOI: 10.3390/en15041526.

12. Ivanov S. L., Sheshukova E. I., Nedashkovskaya E. S. Classification of means of destruction of oversized objects during open-pit mining. Transport, mining and construction engineering: science and production. 2023, no. 19, pp. 138—143. [In Russ]. DOI: 10.26160/2658-3305-2023-19-138-143.

13. Pavlov V. E. Investigation of the operating modes of a long-stroke electromagnetic hammer by computer simulation. Proceedings of Irkutsk State Technical University. 2019, vol. 23, no. 2 (145), pp. 260—270. [In Russ]. DOI: 10.21285/1814-3520-2019-2-260-270.

14. Usanov K. M.,Volgin A. V., Chetverikov E. A., Kargin V. A., Moiseev A. P., Ivanova Z. I. Strike action electromagnetic machine for immersion of rod elements into ground. IOP Conference Series: Earth and Environmental Science. 2017, vol. 87, no. 3, article 032050. DOI: 10.1088/1755-1315/87/3/032050.

15. Neyman L. A., Neyman V. Y. Complex analysis of electromagnetic machines for vibroimpact technologies. IOP Conference Series: Earth and Environmental Science. 2017, vol. 87, no. 3, article 032026. DOI: 10.1088/1755-1315/87/3/032026.

16. Neiman L. A., Neiman V. Y., Shabanov A. S. A simplified calculation of the intermittent periodic operating regime of an electromagnetic impact drive. Russian Electrical Engineering. 2014, vol. 85, no. 12, pp. 757—760. DOI: 10.3103/S1068371214120104.

17. Caseiro L., Caires D., Mendes A. Prototyping power electronics systems with zynq-based boards using Matlab/Simulink a complete methodology. Electronics. 2022, vol. 11, no. 7, article 1130. DOI: 10.3390/electronics11071130.

18. Semenov A., Semenova M., Bebikhov Y., Egorov A., Vasilyev P., Kharitonov Y. Vibrating feeder electromagnetic drive model implemented in MatLab/Simulink. International Conference on Electrotechnical Complexes and Systems (ICOECS 2021). 2021, pp. 88—92. DOI: 10.1109/ICOECS52783. 2021.9657343.

19. Eremochkin S. Y., Dorokhov D. V. Characteristics research of the semiconductor frequency converter in matlab simulink. XV International Scientific-Technical Conference on Actual Problems of Electronic Instrument Engineering (APEIE 2021). 2021, pp. 144—149. DOI: 10.1109/APEIE52976.2021.9647561.

20. Shneen S. W., Aziz G. A. Simulation model of 3-phase pwm rectifier by using MATLAB/SIMULINK. International Journal of Electrical and Computer Engineering. 2021, vol. 11, no. 5, pp. 3736— 3746. DOI: 10.11591/ijece.v11i5.pp3736-3746.

21. Le Roux P. F., Ngwenyama M. K. Static and dynamic simulation of an induction motor using Matlab/Simulink. Energies. 2022, vol. 15, no. 10, article 3564. DOI: 10.3390/en15103564.

22. Neyman L. A., Neyman V. Yu. Lineynye sinkhronnye elektromagnitnye mashiny udarnogo deystviya [Linear synchronous electromagnetic impact machines], Novosibirsk, Izd-vo NGTU, 2021, 480 p.

23. Nazaruddin N., Siallagan R. Software engineering development of finite element method programming applications in 2D frame structures using python programs. Journal of Physics: Conference Series. 2021, vol. 2049, no. 1, article 012031. DOI: 10.1088/1742-6596/2049/1/012031.

24. Nikitenko G., Konoplev E., Salpagarov V., Konoplev P., Bobryshev A. Method of calculating magnetic system using finite difference method. Engineering for Rural Development. 2020, no. 19, pp. 1373—1380. DOI: 10.22616/ERDev.2020.19.TF339.

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.