Dynamic model of the electromagnetic impact mechanism of the electric rock drill

The expediency of using electric rock drills for percussion-rotary drilling of holes and boreholes in remote areas with difficult surface relief and limited access to external power sources is substantiated. The object of research is a single-coil electromagnetic impact mechanism with an elastic reversal of the striker, with adjustable frequency and impact energy values. This unit is made according to a scheme with a central technological channel. It is powered by an energy source with limited power. The dynamic model is based on differential equations reflecting the electrical and mechanical balance of the impact mechanism taking into account the boundaries of motion of the impact mass of the striker and impact interactions in the mechanical system. The calculation of the model is carried out by means of computer simulation in Matlab Simulink based on numerical methods. The dependence of the energy on the frequency of impacts for the given parameters of the impact mechanism is obtained. The simulation results are agreed with the results obtained on the physical model. The calculation error of the dependence of the energy on the frequency of impacts does not exceed 6%, which is permissible for solving problems of design calculation.

Keywords: Mining and construction work, drilling holes and boreholes, electric rock drill, electromagnetic impact mechanism, dynamic model, mechanical oscillatory system, analysis of working procedures, impact energy, impact frequency, efficiency.
For citation:

Neyman L. A., Neyman V. Yu. Dynamic model of the electromagnetic impact mechanism of the electric rock drill. MIAB. Mining Inf. Anal. Bull. 2022;(12-2):190—202. [In Russ]. DOI: 10.25018/0236_1493_2022_122_0_190.

Acknowledgements:
Issue number: 12
Year: 2022
Page number: 190-202
ISBN: 0236-1493
UDK: 621.313.282:621.928.235
DOI: 10.25018/0236_1493_2022_122_0_190
Article receipt date: 24.01.2022
Date of review receipt: 27.09.2022
Date of the editorial board′s decision on the article′s publishing: 10.11.2022
About authors:

Neiman L. A., Dr. Sci. (Eng.), Professor, http://orcid.org/0000-0002-3442-6531, Novosibirsk State Technical University, 630073, Novosibirsk, Karl Marx Avenue, 20, Russia, e-mail: neyman31@gmail.com;
Neiman V. Yu., Dr. Sci. (Eng.), Head of the Department, http://orcid.org/0000-0002-84331610, Novosibirsk State Technical University, 630073, Novosibirsk, Karl Marx Avenue, 20, Russia, E-mail: nv.nstu@ngs.ru;

 

For contacts:

Neiman Vladimir Yurievich, e-mail: nv.nstu@ngs.ru.

Bibliography:

1. Yampol’skij D. Z. Some features of shock impulses of impact machines. Vestnik nauchno-tekhnicheskogo razvitiya. 2020, no. 4 (152), pp. 26—42. [In Russ]. DOI: 10.18411/ vntr2020−152−4.

2. Khrutskiy A. A., Oshchepkov V. S. Computer modeling of DTH hammer P-110 operation. MIAB. Mining Inf. Anal. Bull. 2018, no 7, pp. 131—138. [In Russ]. DOI: 10.25018/02361493−2018−7-0−131−138.

3. Abramenkov D. E., Popov N. A., Abramenkov E. A. Methodology for evaluating energy-saving technical solutions of impact machines and equipment. IOP Conference Series: Materials Science and Engineering. VIII International Scientific Conference Transport of Siberia. 2020, art. 012134. DOI: 10.1088/1757−899X/918/1/012134.

4. Kamanin Yu. N, Redelin R. A., Kravchenko V. A. Modeling the destruction of rocks by a hydraulic percussion device. Gornoe oborudovanie i elektromekhanika. 2017, no. 2(129), pp. 30—34. [In Russ]. https://elibrary.ru/item.asp?id=28843186.

5. Sysoev N. I., Grinko A. A., Grinko D. A. Justification of structure and rational design for hammer drills for helical milling. MIAB. Mining Inf. Anal. Bull. 2021;(7):113—124.[In Russ]. DOI: 10.25018/0236_1493_2021_7_0_113.

6. Gumenyuk V., Dobroborsky B., Gumenyuk O., Krupyshev M. Providing high speed drilling of boreholes with portable pneumatic rock drills in emergency situations. IOP Conference Series: Materials Science and Engineering. 2019, vol. 666, art. 012094. DOI:1 0.1088/1757−899X/666/1/012094.

7. Rempel D., Antonucci A., Barr A., Cooper M. R., Martin B., Neitzel R. L. Pneumatic rock drill vs. electric rotary hammer drill: Productivity, vibration, dust, and noise when drilling into concrete Applied ergonomics. 2019, vol. 74, pp. 31—36. https://doi.org/10.1016/j. apergo.2018.08.005.

8. Uraimov M. U, Erem’yanc V. E. Hydraulic hammer drill with combined impact mechanism and tool rotation mechanism. Transportnoe, gornoe i stroitel’noe mashinostroenie: nauka i proizvodstvo. 2021, no. 10, pp. 56—62. [In Russ]. DOI: 10.26160/2658-3305-2021-10−56−62.

9. Nemkov S. A., Drozdov A. N., Stepanov V. V. Model of the operation of the compression-vacuum percussion mechanism of the SDSPLUS electric rock drill. Mekhanizaciya stroitel’stva. 2016, vol. 77, no. 11. pp. 46—49. [In Russ]. https://elibrary.ru/ item.asp?id=27219885.

10. Usanov K. M., Volgin A. V., Kargin V. A., Moiseev A. P., Chetverikov E. A. Electric converters of electromagnetic strike machine with battery power. IOP Conference Series: Materials Science and Engineering. 2018, vol. 327, art. 052031. DOI: 10.1088/1757−899X/327/5/052031.

11. Abidov A. O., Ismanov O. M. Mathematical model of an electromechanical rotary hammer drill. Byulleten’ nauki i praktiki. 2019, vol. 5. no. 5, pp. 233—240. [In Russ]. DOI: 10.33619/2414−2948/42/31.

12. Yedygenov Ye. K., Vasin K. A. Test data of electromagnetic hammer for non-explosive rock fracturing. MIAB. Mining Inf. Anal. Bull. 2020, no. 5, pp. 80–90. [In Russ]. DOI: 10.25018/0236-1493-2020-5-0−80−90.

13. Neiman L. A., Neiman V. Yu., Shabanov A. S. A simplified calculation of the intermittent periodic operating regime of an electromagnetic impact drive. Russian Electrical Engineering. 2014, vol. 85, no. 12, pp. 757—760. DOI: 10.3103/S1068371214120104.

14. Neiman V. Yu. Dynamic energy transformation of linear electromagnetic machines with preliminary magnetic-energy storage. Russian Electrical Engineering,2003, vol. 74, no. 2, pp. 41—47.

15. Usanov K. M., Volgin A. V., Chetverikov E. A., Kargin V. A., Moiseev A. P., Ivanova Z. I. Strike action electromagnetic machine for immersion of rod elements into ground. IOP Conference Series: Earth and Environmental Science. 2017, vol. 87, art. 032050. DOI : 10.1088/1755−1315/87/3/032050.

16. Neyman L. A., Neyman V. Yu. Complex analysis of electromagnetic machines for vibro-impact technologies. IOP Conference Series: Earth and Environmental Science. 2017, vol. 87, art. 032026. DOI: 10.1088/1755−1315/87/3/032026.

17. Kargin V. A., Volgin A. V. Electromagnetic strike action system with self-adjustment of output energy. 2018 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon). IEEE. 2018, pp. 1—4. DOI: 10.1109/FarEastCon.2018.8602647.

18. Izhbuldin E. A., Abramov A. D. Hand-held electric percussion tool for the implementation of vibration shock technologies in transport engineering and construction. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta. 2017, vol. 21, no. 1 (120), pp. 32—39. [In Russ]. DOI: 10.21285/1814-3520-2017-1-32−41.

19. Nejman V. Yu., Nejman L. A., Skotnikov A. A., Artebyakina E. Yu. Patent na izobretenie no. 2502855 ot 11.04.12. Electromagnetic impact mechanism. Byul. no. 36 ot 27.12.13. [In Russ].

20. Hendzel Z., Rykała Ł. Modelling of dynamics of a wheeled mobile robot with mecanum wheels with the use of Lagrange equations of the second kind. International Journal of Applied Mechanics and Engineering. 2017, vol. 22, no. 1, pp. 81—99. DOI: 10.1515/ijame-2017−0005.

21. Van Nguyen T., Petre R. A., Stroe I. Calculus of axial force in a mechanism using Lagrange equations. INCAS Bulletin. 2016, vol. 8, no. 2, pp. 97—108. DOI: 10.13111/2066−8201.2016.8.2.8.

22. Petre R. A., Nichifor S. E., Craifaleanu A., Stroe I. Using Lagrange Equations to Study the Relative Motion of a Mechanism. International Journal of Aerospace and Mechanical Engineering. 2020, vol. 14, no. 10, pp. 421—425.

23. Suvorov I. F., Romanova V. V., Hromov S. V. Investigation of the influence of phase voltage asymmetry on the operating modes of asynchronous motors in the MATLAB / SIMULINK simulation environment. Vestnik Yuzhno-Ural’skogo gosudarstvennogo universiteta. Seriya: Energetika. 2016, vol. 16, no. 3, pp. 72—83. [In Russ]. DOI: 10.14529/ power160309.

24. Xu L., Song J. G., Lin Q. Q. Brushless DC motor speed control system Simulink simulation. 2016 IEEE International Conference on Power and Renewable Energy (ICPRE). 2016, pp. 62—66. DOI: 10.1109/ICPRE.2016.7871173.

25. Kiyakli A. O., Solmaz H. Modeling of an electric vehicle with MATLAB/Simulink. International journal of automotive science and technology. 2018, vol. 2, no. 4, pp. 9—15. https://doi.org/10.30939/ijastech..475477.

26. Nazaruddin N., Siallagan R. Software Engineering Development of Finite Element Method Programming Applications in 2D Frame Structures Using Python Programs Journal of Physics: Conference Series.,2021, vol. 2049, art. 012031. DOI:10.1088/1742−6596/204 9/1/012031.

27. Hu H. Z., Zhao J., Liu X.D, Guo Y. G Magnetic field and force calculation in linear permanent-magnet synchronous machines accounting for longitudinal end effect. IEEE Transactions on Industrial Electronics. 2016, vol. 63, no. 12, pp. 7632—7643. DOI: 10.1109/ TIE.2016.2594793.

28. Fonseca W. S., Lima D. S., Nunes M. V. A., Soeiro N. S., Lima A. K. F. Analysis of electromagnetic stresses and structural integrity on the winding of a transformer under inrush currents conditions. 2016 12th IEEE International Conference on Industry Applications (INDUSCON). 2016, pp. 1—8. DOI: 10.1109/INDUSCON.2016.7874578.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.