Water drive dynamics and time history prediction in the Low Cambrian aquifer within Daldyn kimberlite field

Udachnaya pipe mining within Daldyn kimberlite field uses the underground method with advanced water depression inside the Middle Cambrian aquifer inside the boundaries of the mine field. The rate of inflow of saturated brines with mineralization from 380 to 410 g/l reaches 270–300 m3/h and increases with growing depth of mining. Safe management of highly mineralized water is a challenging problem and needs a prompt and well-thought-of engineering solution. Currently drain water management includes commercial-scale injection of water in the permafrost strata. Since 2021 Udachny mine injects drain water in the permeable zones of the regional Low Cambrian aquifer at the depth of 1400–1700 m below ground surface. This study discusses the further prospects of using the Low-Cambrian aquifer for the injection of water. The computer-assisted hydrogeological modeling produced an integrated prediction of water drive changes within a period of ten years. Three stages of pilot operation of injection sites are investigated, the tectonic structure of the area is analyzed, and the basic hydrodynamic parameters of the target permeable zones are characterized.

Keywords: Yakutian Diamond Province, Daldyn kimberlite field, Udachnaya mine, highly mineralized natural brines, Low Cambrian aquifer, permeable carbonate zones, advanced water depression, drainage systems.
For citation:

Yannikov A. M., Zyryanov I. V., Korepanov A. Yu., Struchkova A. S. Water drive dynamics and time history prediction in the Low Cambrian aquifer within Daldyn kimberlite field. MIAB. Mining Inf. Anal. Bull. 2022;(9):60-73. [In Russ]. DOI: 10.25018/0236_ 1493_2022_9_0_60.

Issue number: 9
Year: 2022
Page number: 60-73
ISBN: 0236-1493
UDK: 556.334
DOI: 10.25018/0236_1493_2022_9_0_60
Article receipt date: 12.07.2022
Date of review receipt: 29.07.2022
Date of the editorial board′s decision on the article′s publishing: 10.08.2022
About authors:

A.M. Yannikov1, Cand. Sci. (Geol. Mineral.), Head of Laboratory, e-mail: yannikov90@mail.ru, ORCID ID: 0000-0002-2169-123Х,
I.V. Zyrianov, Dr. Sci. (Eng.), Head of Chair, e-mail: iv.zyrianov@s-vfu.ru, Mirny Polytechnic Institute, Branch of Ammosov North-Eastern Federal University, 678174 Mirny, Russia,
A.Yu. Korepanov1, Head of Sector, e-mail: korepanovayu@alrosa.ru, ORCID ID: 0000-0002-3593-2524,
A.S. Struchkova1, Head of Sector, e-mail: StruchkovaAS@alrosa.ru,
1 «Yakutniproalmaz» Institute, PJSC «ALROSA», 678174 Mirny, Russia.


For contacts:

Yannikov A.M., e-mail: yannikov90@mail.ru.


1. Yannikov A. M., Yannikova S. A., Korepanov A. Yu. Influence of tectonic faults on the projected advanced water reduction systems on the example of the «Yubileynaya» pipe. MIAB. Mining Inf. Anal. Bull. 2022, no. 5-2, pp. 174—186. [In Russ]. DOI: 10.25018/0236_1493_20 22_52_0_174.

2. Skousen J., Zipper C. E., Rose A., Ziemkiewicz P. F., Nairn R., McDonald L. M., Kleinmann R. L. Review of passive systems for acid mine drainage treatment. Mine Water and the Environment. 2017, vol. 36, no. 1, pp. 133—153.

3. Gubina N. A., Ylesin M. A., Karmanovskaya N. V. Ways to increase the productivity and quality of mine water treatment. Journal of Environmental Management and Tourism. 2018, vol. 9, no. 3, pp. 423—427. DOI: 10.14505/jemt.v9.3(27).03.

4. Deal P. T., Sabatini D. A. Utilizing indicator kriging to identify suitable zones for manual drilling in weathered crystalline basement aquifers. Groundwater for Sustainable Development. 2020, vol. 11, article 100402. DOI: 10.1016/j.gsd.2020.100402.

5. Kolganov V. F. Akishev A. N., Drozdov A. V. Gorno-geologicheskie osobennosti korennykh mestorozhdeniy almazov Yakutii [Mining and geological features of primary diamond deposits in Yakutia], LAP LAMBERT Academic Publishing, 2015, 576 p.

6. Drozdov A. V., Iost N. A., Lobanov V. V. Kriogidrogeologiya almaznykh mestorozhdeniy Zapadnoy Yakutii [Cryohydrogeology of diamond deposits in Western Yakutia], Irkutsk, Izd-vo IGTU, 2008, 507 p.

7. Alexeev S. V., Alexeeva L. P., Vakhromeev A. G. Brines of the Siberian platform (Russia): Geochemistry and processing prospects. Geochemistry. 2020, vol. 117, article 104588. DOI: 10.1016/j.apgeochem.2020.104588.

8. Arefieva O. D., Shapkin N. P., Gruschakova N. V., Prokuda N. A. Mine water: chemical composition and treatment. Water Practice and Technology. 2016, vol. 11, no. 3, pp. 540—546.

9. Drozdov A. V. Mining and geological peculiarities of deep layers at Udachaya pipe. MIAB. Mining Inf. Anal. Bull. 2011, no. 3, pp. 153—165. [In Russ].

10. Yannikov A. M. Gidrogeologiya Alakit-Markhinskogo kimberlitovogo polya [Hydrogeology of the Alakit-Markhin kimberlite field]. Mirnyi, Izd-vo ZYaNTS/YaNA, 2022, 132 p.

11. Yannikov A. M., Yannikovа S. A., Zyrianov I. V., Korepanov A. Y. Prospects of using deep-lying aquifers for injection of low-mineralized waters. Russian Mining Industry. 2022, no. 1, pp. 76—81. [In Russ]. DOI: 10.30686/1609-9192-2022-1-76-81.

12. Yannikov A. M., Yannikova S. A., Ovchinnikova M. Yu., Korepanov A. Yu. The use of permafrost for injection of drainage waters of primary diamond deposits on the example of the Noyabrsky site. Vestnik Permskogo universiteta. Geologiya. 2021, no. 3, pp. 284—299. [In Russ]. DOI: 10.17072/psu.geol.20.3.284.

13. Drozdov A. V., Melnikov A. I. Rupture dislocation role in diamond mine water encroachment in Yakutia. Proceedings of the Siberian Department of the Section of Earth Sciences of the Russian Academy of Natural Sciences. Geology, Exploration and Development of Mineral Deposits. 2014, no. 2, pp. 71—81. [In Russ].

14. Pham H. T., Rühaak W., Schuster V., Sass I. Fully hydro-mechanical coupled Plugin (SUB+) in FEFLOW for analysis of land subsidence due to groundwater extraction. SoftwareX. 2019, vol. 9, pp. 15—19.

15. Nagare R. M., Mohammed A. A., Park Y. J., Schincariol R. A. Modeling shallow ground temperatures around hot buried pipelines in cold regions. Cold Regions Science and Technology. 2021, vol. 187, article 103295.

16. Melnik V. V., Harisov T. F., Zamyatin A. L. Methodological bases of complex geomechanical studies for selecting optimal parameters of drainage of waterlogged areas fields. MIAB. Mining Inf. Anal. Bull. 2020, no. 3-1, pp. 127—137. [In Russ]. DOI: 10.25018/0236-14932020-31-0-127-137.

17. Bozau E., Sattler C.-D., van Berk W. Hydrogeochemical classification of deep formation waters. Geochemistry. 2015, vol. 52, pp. 23—30. DOI: 10.1016/j.apgeochem.2014.10.018.

18. Lonshakov V. G., Druzhinin I. A., Timusheva L. V. Overview of hydrogeological challenges and ways of their solution. Sbornik nauchnykh trudov 2-y nauchno-prakticheskoy konferentsii po voprosam gidrogeologii i vodoobespecheniya [Collection of scientific papers of the 2nd Scientific and Practical Conference on Hydrogeology and Water Supply], Izhevsk, 2020, pp. 45—52. [In Russ].

19. Kulikova A. A., Ovchinnikova T. I. On the issue of reducing geoecological risks at mining enterprises. MIAB. Mining Inf. Anal. Bull. 2021, no. 2-1, pp. 251—262. [In Russ]. DOI: 10.25018/0236-1493-2021-21-0-251-262.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.