Autonomous underwater vehicles for mineral mining on continental shelf

In the current conditions of depleted mineral resources on mainlands, it is high time to extract minerals on the continental shelf. Marine mining requires safe and reliable technologies and equipment such that emergences and off-normal situations are excluded. Marine mineral mining operations use cardinally new engineering solutions, beyond the limits of the conventional technologies available for the onshore extraction of mineral resources. Mineral mining on the seabed and lifting to the water surface calls for the reliable equipment meant for safe and continuous operation. A promising trend in this area is manufacture and use of autonomous underwater vehicles for unmanned mining and haulage of minerals. Autonomous underwater vehicles can operate at great depths, in various climates and at low visibility, at minimized energy consumption and without add-ons. Autonomous underwater vehicles have a complex lifting facility, including gas generators, which are heavy and need permanent energy. This article discusses optimization of energy consumption for lifting an autonomous underwater vehicle in seafloor mineral mining by means of using gas after chemical reactions, including detonation of explosives.

Keywords: minerals, marine mining, shelf, seafloor, autonomous underwater vehicle; explosive, underwater mining equipment systematization, lifting force, gas volume in explosive detonation.
For citation:

Kislyakov V. E., Katyshev P. V., Shkaruba N. A., Elizariev V. S., Bashkatova Y. R. autonomous underwater vehicles for mineral mining on continental shelf. MIAB. Mining Inf. Anal. Bull. 2021;(3-1):318—329. [In Russ]. DOI: 10.25018/0236_1493_2021_31_0_318.

Acknowledgements:
Issue number: 3
Year: 2021
Page number: 318-329
ISBN: 0236-1493
UDK: 662.349.18
DOI: 10.25018/0236_1493_2021_31_0_318
Article receipt date: 08.10.2020
Date of review receipt: 01.03.2021
Date of the editorial board′s decision on the article′s publishing: 10.02.2021
About authors:

Kislyakov V. E., Dr. Sci. (Eng.), professor of the Department “Open pit mining”, vkislyakov@sfu-kras.ru;
Katyshev P. V., Cand. Sci. (Eng.), associate professor of the Department “Open pit mining”, BestPavel1989@mail.ru;
Shkaruba N. A., postgraduate student of the Department “Open pit mining”. nshkaruba@ sfu-kras.ru;
Elizariev V. S., student of the Department “Open pit mining”. vladimir16elizarev@mail.ru;
Bashkatova Y. R., postgraduate student of the Department “Open pit mining”. bashkatova. yana@yandex.ru;
Siberian Federal University, Institute of Mining, Geology and Geotechnology, Krasnoyarsk, Russia.

 

For contacts:
Bibliography:

1. Dobrecov V. B. Osvoenie mineral’nyh resursov shel’fa [Development of shelf mineral resources]. Leningrad: Nedra, 1980. 272 p. [In Russ]

2. Bondarenko A. A. Podvodnaya dobycha poleznyh iskopaemyh [Underwater extraction of minerals] [Elektronnyj resurs]. Strojka : [sajt]. [2000]. URL: http://library.stroit.ru/articles/ podvod/index.html (data obrashcheniya: 12. 10. 2015). [In Russ]

3. Hein JR, Mizell K, Koschinsky A, Conrad TA (2013) Deep-ocean mineral deposits as a source of critical metals for highand green-technology applications: comparison with land-based resources. Ore Geology Reviews 51: 1—14.

4. Volkmann SE, Lehnen F (2017) Production key figures for planning the mining of manganese nodules. Marine Georesources & Geotechnology 36: 360—375.

5. Bashir M. B., Kim S. H., Kiosidou E., Wolgamot H., Zhang W., (2012). A Concept for seabed Rare Earth Mining in the Eastern South Pacific. The LRET Collegium, 2012, Series 1. Available online at: https://www.southampton.ac. uk/assets/imported/transforms/content-block/UsefulDownloads_Download/ 7C8750BCBBB64FBAAF2A13C4B8A7D 1FD/LRET%20Collegium%202012 %20Volume%201.pdf. [In Russ]

6. Birney K. (2006). Potential Deep-Sea Mining of Seafloor Massive Sulphides: A Case Study in Papua New Guinea. Master’s thesis, University in Isla Vista, Isla Vista, CA.

7. Boschen R. E., Rowden A. A., Clark M. R., Gardner J. P. A. Mining of deep-sea seafloor massive sulfides: a review of the deposits, their benthic communities, impacts from mining, regulatory frameworks and management strategies. Ocean & Coast. Manage, 2013 no. 84, pp. 54—67. doi: 10.1016/j.ocecoaman.2013.07.005.

8. Petersen S and 5 coauthors (2016) News from the seabed geological characteristics and resource potential of deep-sea mineral resources. Marine Policy 70: 175—187.

9. Wynn RB and 13 coauthors (2014) Autonomous Underwater Vehicles (AUVs): their past, present and future contributions to the advancement of marine geoscience. Marine Geology 352: 451—468.

10. Davidovich A. P., Kapustin A. A., Mihajlov V. I. Podvodnaya dobycha peska i graviya za rubezhom [Underwater extraction of sand and gravel abroad]. Moscow: VNIIESM, 1975. 254 p. [In Russ]

11. Kozlov M. Yu., Lukonina O. A., Nasonov D. A. Tekhnicheskie sredstva dlya osvoeniya glubokovodnyh mestorozhdenij dna Mirovogo okeana [Technical means for the development of deep-water deposits of the bottom of the World Ocean]. Materialy XII mezhdunarodnoj nauchno-prakticheskoj konferencii «Novye idei v naukah o Zemle». Moscow, 2015. [In Russ]

12. Vil’mis A. L. Metodicheskoe obosnovanie parametrov glubokovodnogo pod’ema [Methodological substantiation of the parameters of deep-water ascent]. Materialy XIII Mezhdunarodnoj nauchno-prakticheskoj konferencii «Novye idei v naukah o Zemle» (Moskva : RGGRU, 5–7 aprelya, 2017 g.): v 2 t.: doklady. T. 1. Moscow: MGRI-RGGRU, 2017. 516 s. S.384—385 [In Russ]

13. Tarasov Yu. D. Complexes for the extraction of ferromanganese nodules from the seabed. Gornoe oborudovanie i elektromekhanika. 2011. no. 2. pp. 17—25. [In Russ]

14. Drobadenko V. P., Maluhin N. G., Lukonina O. A., Kozlov M. Yu. Substantiation of technological parameters of ejector extraction of magnetite sands in the shelf zone. MIAB. Mining Inf. Anal. Bull. Otdel’nyj vypusk no. 11. Gidromekhanizaciya, 2015. [In Russ]

15. Kirichenko E. A., Goman O. G., Kirichenko V. E., Romanyukov A. V. Modelirovanie dinamicheskih processov v glubokovodnyh pnevmogidrotransportnyh sistemah [Modeling of dynamic processes in deep-water pneumatic hydrotransport systems]: monogr. D.: Nacional’nyj gornyj universitet, 2012. 268 p. [In Russ]

16. Andreev S. I., Babaeva S. F. Mineral’nye resursy Mirovogo okeana pragmaticheskaya real’nost’ obozrimogo budushchego ili prizrachnyj geopoliticheskij mirazh [Mineral resources of the World Ocean are a pragmatic reality of the foreseeable future or an illusory geopolitical mirage]. FGUP «VNIIOkeangeologiya im. I. S. Gramberga, Sankt-Peterburg, 2014. [In Russ]

17. Patent RF no. 2539508, 21.11.2013. Kislyakov V. E., Malikova K. V., Katyshev P. V. Avtonomnoe ustrojstvo dlya pod»ema poleznyh iskopaemyh so dna akvatorii. 2015, Byul. no. 2. [In Russ]

18. Kislyakov V. E. Modern Technologies of mineral resources development. Sollection of articles. Saarbrucken, Germany: LAPLAMBERT Academic Publishing, 2012. 148 p.

19. Kislyakov V. E., Katyshev P. V., Baranova I. A. Foundations of a new technology for the development of shelf soils at great depths. Gornaya promyshlennost’. 2013. no. 109. pp. 96–99. [In Russ]

20. Glinka N. L. Obshchaya himiya [General chemistry]. 22–ya red. Leningrad: Himiya, 1977. pp. 18–19. [In Russ]

21. Talanov A. V. Vse o vozdushnyh sharah [All about balloons]. Moscow: Astrel’, 2002. 271 s. [In Russ]

22. Gimatudinov Sh. K., Shirkovskij A. I. Fizika neftyanogo i gazovogo plasta [Physics of oil and gas reservoir]. Moscow: Nedra, 1982. 311 p. [In Russ]

23. Frish S. E., Timoreva A. V. Kurs obshchej fiziki [Course of General Physics]. SanktPeterburg: Lan’, 2006. 518 p. [In Russ]

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.