Back to search

Efficient application of optical references in surveying

The article discusses the features of the reference device used in mine surveying, mountain-landscape marking and mine workings with the frequency of the optical range for the case of measuring the gravitational potential. The basic principles of operation of the optical reference 87Sr are presented. The main working levels of primary and secondary cooling of atoms are considered, by means of which spectroscopy without the Doppler effect is possible, leading to the creation of a device sensitive to changes in altitude above sea level, and with a constant height sensitive to changes in the gravitational potential — a gravimeter. The developed diagram of the sequence of control signals of the optical reference for detecting and binding the custodian to the clock transition of the working substance is presented. A number of types of perturbations of the detecting signal of this device, which must be reduced and stabilized to ensure operation as a gravimeter: the shift of the operating optical frequency from the influence of the intensity of the optical grating, the effect of heat flow from parts of the vacuum chamber on the atomic transitions of the working substance, the effect of gravitational influence on the useful device signal. Formed ways to bypass and eliminate them. The possibilities of using an optical reference as a tool for constructing a gravitational map of the earth’s surface, or finding anomalies of the earth’s crust by changing the acceleration of free fall, which can also lead to the development of methods for finding minerals, are presented. Estimates are made of the height measurement error using an optical frequency reference from a change in the useful signal of the optical frequency reference, which makes it possible to make accurate topological measurements in mine surveying when measuring on the surface and in the bowels of the Earth during the exploration and exploitation of mineral deposits and the construction of mining enterprises.

Keywords: оptical clocks, laser cooling, thermal shift, gravity shift, gravimeter.
For citation:

Gurov M. G., Gurova E. G. Efficientapplicationofopticalreferencesinsurveying. MIAB. Mining Inf. Anal. Bull. 2022;(12-2):87—101. [In Russ]. DOI: 10.25018/0236_1493_2022_122_0_87.

Acknowledgements:
Issue number: 12
Year: 2022
Page number: 87-101
ISBN: 0236-1493
UDK: 539.1.043,681.2.082,681.518(075.32)
DOI: 10.25018/0236_1493_2022_122_0_87
Article receipt date: 24.01.2022
Date of review receipt: 27.09.2022
Date of the editorial board′s decision on the article′s publishing: 10.11.2022
About authors:

Gurov M. G.1, Researcher, e-mail: goorovmg@mail.ru;
Gurova E. G.2, associate professor, e-mail: lena319@mail.ru;
1 Federal State Unitary Enterprise “All-Russian Research Institute of Physical, Technical and Radio Engineering Measurements”, Mendeleevo village, Mendeleevo, Moscow region, 141570, Russia;
2 Novosibirsk State Technical University, 20 K. Marx Ave., Novosibirsk, 630073 Russia.

 

For contacts:

Gurova E. G., e-mail: lena319@mail.ru.

Bibliography:

1. Bondarescu R., Schärer A., Lundgren A., Hetényi G., Houlié N., Jetzer P., Bondarescu M. Ground-based optical atomic clocks as a tool to monitor vertical surface motion. Geophys. J. Int. 2015, vol. 202, pp. 1770–1774. DOI: 10.1093/gji/ggv246.

2. Thompson A., Moran J., Swenson G. Interferometry and Synthesis in Radio Astronomy. Springer, Cham. 2017, p. 872. DOI: 10.1007/978−3-319−44431−4.

3. Fujieda M., Piester D., Gotoh T., Becker J., Aida M., Bauch A. Carrier-phase two-way satellite frequency transfer over a very long baseline. Metrologia. 2014, vol. 51, p. 253–262. DOI:10.1088/0026−1394/51/3/253.

4. Bloom B. J., Nicholson T. L., Williams J. R., Campbell S. L., Bishof M., Zhang X., Zhang W., Bromley S. L., Ye J. An optical lattice clock with accuracy and stability at the 10−18 level. Nature. 2014, vol. 506, p. 71–75. DOI:10.1038/nature12941.

5. Vorotyntseva I. A., Smirnov P. A., Danilchenko A. L., Yakubov M. M. Interpretation of geological data at the stage of gold ore deposit exploration. MIAB. Mining Inf. Anal. Bull. 2021;(11):45—55. [In Russ]. DOI: 10.25018/0236_1493_2021_11_0_45.

6. Alenichev V. M. Shaping geoinformation system for mine diagnostics. MIAB. Mining Inf. Anal. Bull. 2021;(5—1):217—225. [In Russ]. DOI: 10.25018/0236_1493_2021_51_0_ 217.

7. Ushijima I., Takamoto M., Das M., Ohkubo T., and Katori H. Cryogenic optical lattice clocks. Nat. Photon. 2015, vol. 9, p.185. DOI: 10.1038/nphoton.2015.5.

8. Hinkley N., Sherman J. A., Phillips N. B., Schioppo M., Lemke N. D., Beloy K., Pizzocaro M., Oates C. W., Ludlow A. D. An atomic clock with 10−18 instability. Science. 2013, vol. 341, pp.1215–1218. DOI: 10.1126/science.1240420.

9. Pizzocaro M., Bregolin F., Barbieri P., Rauf B., Levi F., Calonico D. Absolute frequency measurement of the 1S0–3P0 transition of 171Yb. Metrologia. 2017, vol. 54, pp. 102–112. DOI: 10.1088/1681−7575/aa4e62.

10. Lisdat Ch., Dorscher S., Nosske I., Sterr U., Blackbody radiation shift in strontium lattice clocks revisited. Phys.Rev.Res. 2021, vol. 3, L042036. DOI: 10.1103/ PhysRevResearch.3.L042036.

11. Hobson R., Bowden W., Silva A., Baynham C. F. A., Margolis H. S., Baird P. E. G., Gill P., and Hill I. R. A strontium optical lattice clock with 1·10−17 uncertainty and measurement of its absolute frequency. Metrologia. 2020, vol. 57,065026. DOI: 10.1088/1681−7575/ abb530.

12. Brewer S. M., Chen J. S., Hankin A. M., Clements E. R., Chou C. W., Wineland D. J., Hume D. B., Leibrandt D. R. 27Al+ quantum-logic clock with a systematic uncertainty below 10−18. Phys. Rev. Lett. 2019, vol. 123,033201. DOI: 10.1103/PhysRevLett.123.033201.

13. Ohmae N., Bregolin F., Nemitz N., Katori H. Direct measurement of the frequency ratio for Hg and Yb optical lattice clocks and closure of the Hg/Yb/Sr loop. Opt Express. 2020, vol. 28, iss. 5531, pp. 15112–15121. DOI: 10.1364/OE.391602.

14. Nemitz N., Gotoh T., Nakagawa F., Ito H., Hanado Y., Ido T., Hachisu H. Absolute frequency of 87Sr at 1.8·10−16 uncertainty by reference to remote primary frequency standards. Metrologia. 2021, vol. 58,025006. DOI: 10.1088/1681−7575/abc232.

15. RF patent No. 2693551,07/03/2019. Gurov M. G., Kostin A. S., Slyusarev S. N. Zeeman atomic beam moderator. 2019. Bull. No. 19. [In Russ].

16. RF patent No. 2752462,07/28/2021. Gurov M. G. Zeeman moderator of an atomic beam. 2021. Bull. No. 22. [In Russ].

17. Gurov M. G., Gurova E. G., Rozanov S. B. Species of vacuum chamber design with cryogenic cooling for strontium optical clocks. IOP Journal of Physics. 2020, vol. 1661,012140. DOI:10.1088/1742−6596/1661/1/012140.

18. Lodewyck J., Zawada M., Lorini L., Gurov M., Lemonde P. Observation and cancellation of the dc Stark shift in strontium optical lattice clock. IEEE Transactions on UFFC. 2012, vol. 59, p. 411. DOI:10.1109/TUFFC.2012.2209.

19. Porsev S. G., Safronova M. S., Safronova U. I., Kozlov M. G. Multipolar Polarizabilities and Hyperpolarizabilities in the Sr Optical Lattice Clock. Phys. Rev. Lett. 2018, vol. 120,063204. DOI: 10.1103/PhysRevLett.120.063204.

20. Middelmann Th., Falke St., Lisdat Ch. and Sterr U. High Accuracy Correction of Blackbody Radiation Shift in an Optical Lattice Clock. Phys. Rev. Lett. 2012, vol. 109, pp. 263004−1–263004−5. DOI:10.1103/PhysRevLett.109.263004.

21. Ablewski P., Bober M. and Zawada M. Reducing blackbody radiation shift uncertainty in optical lattice clocks. Proceedings of the European Frequency and Time Forum, Torino, Italy. 2018, p. 352. DOI: 10.1109/EFTF.2018.8409067.

22. Takamoto M., Ushijima I., Ohmae N., Yahagi T., Kokado K., Shinkai H., and Katori H. Test of general relativity by a pair of transportable optical lattice clocks. Nat. Photon. 2020. vol. 14, pp. 411–415. DOI:10.1038/s41566-020-0619-8.

23. McGrew W. F., Zhang X., Fasano R. J., Schäffer S. A., Beloy K., Nicolodi D., Brown R. C., Hinkley N., Milani G., Schioppo M., Yoon T. H., Ludlow A. D. Atomic clock performance enabling geodesy below the centimetre level. Nature. 2018, vol. 564, pp. 87–90. DOI: 10.1038/s41586-018-0738-2.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.