Bibliography: 1. Bondarescu R., Schärer A., Lundgren A., Hetényi G., Houlié N., Jetzer P., Bondarescu M. Ground-based optical atomic clocks as a tool to monitor vertical surface motion. Geophys. J. Int. 2015, vol. 202, pp. 1770–1774. DOI: 10.1093/gji/ggv246.
2. Thompson A., Moran J., Swenson G. Interferometry and Synthesis in Radio Astronomy. Springer, Cham. 2017, p. 872. DOI: 10.1007/978−3-319−44431−4.
3. Fujieda M., Piester D., Gotoh T., Becker J., Aida M., Bauch A. Carrier-phase two-way satellite frequency transfer over a very long baseline. Metrologia. 2014, vol. 51, p. 253–262. DOI:10.1088/0026−1394/51/3/253.
4. Bloom B. J., Nicholson T. L., Williams J. R., Campbell S. L., Bishof M., Zhang X., Zhang W., Bromley S. L., Ye J. An optical lattice clock with accuracy and stability at the 10−18 level. Nature. 2014, vol. 506, p. 71–75. DOI:10.1038/nature12941.
5. Vorotyntseva I. A., Smirnov P. A., Danilchenko A. L., Yakubov M. M. Interpretation of geological data at the stage of gold ore deposit exploration. MIAB. Mining Inf. Anal. Bull. 2021;(11):45—55. [In Russ]. DOI: 10.25018/0236_1493_2021_11_0_45.
6. Alenichev V. M. Shaping geoinformation system for mine diagnostics. MIAB. Mining Inf. Anal. Bull. 2021;(5—1):217—225. [In Russ]. DOI: 10.25018/0236_1493_2021_51_0_ 217.
7. Ushijima I., Takamoto M., Das M., Ohkubo T., and Katori H. Cryogenic optical lattice clocks. Nat. Photon. 2015, vol. 9, p.185. DOI: 10.1038/nphoton.2015.5.
8. Hinkley N., Sherman J. A., Phillips N. B., Schioppo M., Lemke N. D., Beloy K., Pizzocaro M., Oates C. W., Ludlow A. D. An atomic clock with 10−18 instability. Science. 2013, vol. 341, pp.1215–1218. DOI: 10.1126/science.1240420.
9. Pizzocaro M., Bregolin F., Barbieri P., Rauf B., Levi F., Calonico D. Absolute frequency measurement of the 1S0–3P0 transition of 171Yb. Metrologia. 2017, vol. 54, pp. 102–112. DOI: 10.1088/1681−7575/aa4e62.
10. Lisdat Ch., Dorscher S., Nosske I., Sterr U., Blackbody radiation shift in strontium lattice clocks revisited. Phys.Rev.Res. 2021, vol. 3, L042036. DOI: 10.1103/ PhysRevResearch.3.L042036.
11. Hobson R., Bowden W., Silva A., Baynham C. F. A., Margolis H. S., Baird P. E. G., Gill P., and Hill I. R. A strontium optical lattice clock with 1·10−17 uncertainty and measurement of its absolute frequency. Metrologia. 2020, vol. 57,065026. DOI: 10.1088/1681−7575/ abb530.
12. Brewer S. M., Chen J. S., Hankin A. M., Clements E. R., Chou C. W., Wineland D. J., Hume D. B., Leibrandt D. R. 27Al+ quantum-logic clock with a systematic uncertainty below 10−18. Phys. Rev. Lett. 2019, vol. 123,033201. DOI: 10.1103/PhysRevLett.123.033201.
13. Ohmae N., Bregolin F., Nemitz N., Katori H. Direct measurement of the frequency ratio for Hg and Yb optical lattice clocks and closure of the Hg/Yb/Sr loop. Opt Express. 2020, vol. 28, iss. 5531, pp. 15112–15121. DOI: 10.1364/OE.391602.
14. Nemitz N., Gotoh T., Nakagawa F., Ito H., Hanado Y., Ido T., Hachisu H. Absolute frequency of 87Sr at 1.8·10−16 uncertainty by reference to remote primary frequency standards. Metrologia. 2021, vol. 58,025006. DOI: 10.1088/1681−7575/abc232.
15. RF patent No. 2693551,07/03/2019. Gurov M. G., Kostin A. S., Slyusarev S. N. Zeeman atomic beam moderator. 2019. Bull. No. 19. [In Russ].
16. RF patent No. 2752462,07/28/2021. Gurov M. G. Zeeman moderator of an atomic beam. 2021. Bull. No. 22. [In Russ].
17. Gurov M. G., Gurova E. G., Rozanov S. B. Species of vacuum chamber design with cryogenic cooling for strontium optical clocks. IOP Journal of Physics. 2020, vol. 1661,012140. DOI:10.1088/1742−6596/1661/1/012140.
18. Lodewyck J., Zawada M., Lorini L., Gurov M., Lemonde P. Observation and cancellation of the dc Stark shift in strontium optical lattice clock. IEEE Transactions on UFFC. 2012, vol. 59, p. 411. DOI:10.1109/TUFFC.2012.2209.
19. Porsev S. G., Safronova M. S., Safronova U. I., Kozlov M. G. Multipolar Polarizabilities and Hyperpolarizabilities in the Sr Optical Lattice Clock. Phys. Rev. Lett. 2018, vol. 120,063204. DOI: 10.1103/PhysRevLett.120.063204.
20. Middelmann Th., Falke St., Lisdat Ch. and Sterr U. High Accuracy Correction of Blackbody Radiation Shift in an Optical Lattice Clock. Phys. Rev. Lett. 2012, vol. 109, pp. 263004−1–263004−5. DOI:10.1103/PhysRevLett.109.263004.
21. Ablewski P., Bober M. and Zawada M. Reducing blackbody radiation shift uncertainty in optical lattice clocks. Proceedings of the European Frequency and Time Forum, Torino, Italy. 2018, p. 352. DOI: 10.1109/EFTF.2018.8409067.
22. Takamoto M., Ushijima I., Ohmae N., Yahagi T., Kokado K., Shinkai H., and Katori H. Test of general relativity by a pair of transportable optical lattice clocks. Nat. Photon. 2020. vol. 14, pp. 411–415. DOI:10.1038/s41566-020-0619-8.
23. McGrew W. F., Zhang X., Fasano R. J., Schäffer S. A., Beloy K., Nicolodi D., Brown R. C., Hinkley N., Milani G., Schioppo M., Yoon T. H., Ludlow A. D. Atomic clock performance enabling geodesy below the centimetre level. Nature. 2018, vol. 564, pp. 87–90. DOI: 10.1038/s41586-018-0738-2.