Experimental and analytical investigation of geomechanical dynamics of coal mining near tectonic faults

The geological and geotechnical conditions of Elbansky-5 (E-5) coal seam mining in Osinniki Mine of Raspadskaya Coal Company are analyzed. Using the data of operating seismic monitoring system GITS (VNIMI), seismic activity is investigated in the period of mining operations in extraction panel 4-1-5-7 of E-5 seam. The seismic records within the mine field during mining operations in extraction panel 4-1-5-7 in 2020 displayed the high seismic activity both on the side of a pillar between the test extraction panel being mined and mined-out extraction panel 4-1-5-6, and in front of the longwall face, and identified rockbursthazardous zones at the intersection of a group of tectonic faults and the leading place of the longwall face. With a view to revealing the laws of development of seismically active zones in the areas of higher rock pressure, the mathematical models of the stress–strain behavior of rock mass were constructed using the set of the problem-oriented computer programs developed at the Department of Geotechnology at the Siberian State Industrial University. This article presents the mathematical modeling results on the stress–strain behavior of the nonuniform coaland-rock mass with regard to the influence of longwalls and tectonic faults. The mathematical stress–strain modeling was carried out as a case-study of the mine field enclosing extraction panel 4-1-5-7 of E-5 seam and the pillars around it. The geometry of the theoretical model was created using the geological characteristic of the test site. The qualitative and quantitative relations between the stress–strain behavior and the seismic activity in rock mass are determined.

Keywords: mathematical modeling, finite element method, seismic monitoring system, geodynamic phenomena, stress–strain behavior, stress concentrations, informativity, integral indicator.
For citation:

Razumov E. E., Prostov S. M., Petrova O. A. Experimental and analytical investigation of geomechanical dynamics of coal mining near tectonic faults. MIAB. Mining Inf. Anal. Bull. 2024;(3):102-118. [In Russ]. DOI: 10.25018/0236_1493_2024_3_0_102.

Acknowledgements:
Issue number: 3
Year: 2024
Page number: 102-118
ISBN: 0236-1493
UDK: 550.3
DOI: 10.25018/0236_1493_2024_3_0_102
Article receipt date: 10.05.2023
Date of review receipt: 18.10.2023
Date of the editorial board′s decision on the article′s publishing: 10.02.2024
About authors:

E.E. Razumov1, Graduate Student, Researcher, JSC Scientific Research Institute of Mining Geomechanics and Surveying — VNIMI Interdisciplinary Research Center, Saint-Petersburg, Russia, e-mail: razumov@vnimi.ru,
S.M. Prostov1, Dr. Sci. (Eng.), Professor, e-mail: razumov@vnimi.ru,
O.A. Petrova, Cand. Sci. (Eng.), Assistant Professor, Siberian State Industrial University, 654007, Novokuznetsk, Russia, e-mail: ol_petrova@mail.ru,
1 T. Gorbachev Kuzbass State Technical University, 650000, Kemerovo, Russia.

 

For contacts:

E.E. Razumov, e-mail: razumov@vnimi.ru.

Bibliography:

1. Razumov E. E., Rukavishnikov G. D., Mulev S. N., Prostov S. M. Seismic activity in rock mass during mining operations in Vorkutaugol’s Komsomolskaya Mine. MIAB. Mining Inf. Anal. Bull. 2022, no. 1, pp. 104—114. [In Russ]. DOI: 10.25018/0236_1493_2022_1_0_104.

2. Marcak H., Mutke G. Seismic activation of tectonic stresses by mining. Journal of Seismology. 2013, vol. 17, no. 4, pp. 1139—1148.

3. Meifeng C. Prediction and prevention of rockburst in metal mines. A case study of Sanshandao gold mine. Journal of Rock Mechanics and Geotechnical Engineering. 2016, vol. 8, no. 2, pр. 204—211.

4. Manchao H., Fuqiang R., Dongqiao L. Rockburst mechanism research and its control. International Journal of Mining Science and Technology. 2018, vol. 28, no. 5, pр. 829—837.

5. Rasskazov I. Yu., Fedotova Yu. V., Sydlyar A. V., Potapchuk M. I. Analysis of induced seismic events in rockburst-hazardous Nikolaevsk deposit. MIAB. Mining Inf. Anal. Bull. 2020, no. 11, pp. 46—56. [In Russ]. DOI: 10.25018/0236-1493-2020-11-0-46-56.

6. Azhari A., Ozbay U. Evaluating the effect of earthquakes on open pit mine slopes. 50th U.S. Rock Mechanics. Geomechanics Symposium, Houston, Texas, 2016, pp. 315—324.

7. Williams-Stroud S. C. Earth stress and seismic hazard from the size-frequency distribution of seismic events. 51st U.S. Rock Mechanics. Geomechanics Symposium. California, San-Francisco, 2017, pp. 544—550.

8. Egorov A. P., Ryzhov V. A. On the issue of systematization of geophysical studies of the geomechanical state of the rock mass and the Earth's surface for operational safety control of mining operations at coal mines. Ugol'. 2019, no. 10, pp. 22—28. [In Russ].

9. Kopylov K. N., Smirnov O. V., Kulik A. I. Acoustic control of the array state and forecast of dynamic phenomena. MIAB. Mining Inf. Anal. Bull. 2015, no. 7, pp. 82—88. [In Russ].

10. Kopylov K. N., Smirnov O. V., Kulik A. I., Potapov P. V. Tests of an automated acoustic control system for the state of an array of rocks. Ugol'. 2015, no. 7, pp. 44—47. [In Russ].

11. Smirnov O. V., Kulik A. I., Lapin E. A. Forecast of geological disturbances by acoustic signal parameters. Ugol'. 2015, no. 11, pp. 76—79. [In Russ].

12. Razumov E. E., Rukavishnikov G. D., Mulev S. N., Prostov S. M. The basic principles of building seismic monitoring systems when working off impact-prone coal seams. Gornyi Zhurnal. 2021, no. 1, pp. 8—12. [In Russ]. DOI: 10.17580/gzh.2021.01.02.

13. Razumov E. E., Prostov S. M., Mulev S. N., Rukavishnikov G. D. Seismic information processing algorithm. MIAB. Mining Inf. Anal. Bull. 2022, no. 2, pp. 17—29. [In Russ]. DOI: 10.25018/ 0236_1493_2022_2_0_17.

14. Fryanov V. N., Lukin K. D., Petrova O. A., Shekhovtsova V. O., Fryanova O. V. Mathematical modeling of stress and damage formation processes in geotectonic active zones of a carboniferous massif under the influence of underground mining. MIAB. Mining Inf. Anal. Bull. 2012, no. 8, pp. 131—138. [In Russ].

15. Nikitina A. M., Fryanov V. N. Geomekhanicheskoe obespechenie ustoychivosti gornykh vyrabotok v neodnorodnom ugleporodnom massive [Geomechanical stability assurance of mine workings in an inhomogeneous carboniferous massif], Novokuznetsk, SibGIU, 2009, 199 p.

16. Fryanov V. N., Stepanov Yu. A. Certificate of official registration of the computer program No. 2000610937. 21.09.2000. [In Russ].

17. Stepanov A. V., Fryanov V. N., Stepanov Yu. A. Certificate of official registration of the computer program No. 2001610645. 31.05.2001. [In Russ].

18. Zlatitskaya Yu. A., Fryanov V. N. Geomekhanicheskoe obosnovanie parametrov opasnykh zon i tekhnologii uprochneniya porod v okrestnosti podzemnykh gornykh vyrabotok [Geomechanical substantiation of parameters of hazardous zones and technology of rock hardening in the vicinity of underground mine workings], Novokuznetsk, SibGIU, 2006, 160 p.

19. Oparin V. N., Adushkin V. V., Vostrikov V. I., Usol'tseva O. M., Mulev S. N., Yushkin V. F., Kiryaeva T. A., Potapov V. P. An experimental and theoretical framework of nonlinear geotomography. Part I: Research problem statement and justification. MIAB. Mining Inf. Anal. Bull. 2019, no. 1, pp. 5—29. [In Russ]. DOI: 10.25018/0236-1493-2019-01-0-5-25; Part II: Dynamic and kinematic characteristics of pendulum waves in high-stress geomedia and processes of seismic emission. MIAB. Mining Inf. Anal. Bull. 2019, no. 11, pp. 5—26. [In Russ]. DOI: 10.25018/0236-1493-2019-11-0-5-26; Part III: Promising systems to control deformation and wave processes in surface and underground mining. MIAB. Mining Inf. Anal. Bull. 2019, no. 12, pp. 5—29. [In Russ]. DOI: 10.25018/0236-1493-2019-12-05-29.

20. Ivanov V. V., Egorov P. V., Pimonov A. G. Statistical theory of emission processes in loaded structurally inhomogeneous rocks and the problem of forecasting dynamic phenomena. Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh. 1990, no. 4, pp. 59—74. [In Russ].

21. Zhuravleva O. G., Avetisyan I. M., Zemtsovsky A. V. Integration of seismic data and results of numerical modeling of the stress-strain state of the massif in shock-hazardous conditions. MIAB. Mining Inf. Anal. Bull. 2017, no. 4, pp. 173—183. [In Russ].

22. Yamshchikov V. S., Voznesenskij A. S. Information basis for controlling geometrical processes. Journal of Mining Science. 1994, vol. 30, no. 3, pp. 229—237.

23. Voznesenskiy A. S. Sistemy kontrolya geomekhanicheskikh protsessov [Control systems of geomechanical processes], Moscow, Izd-vo «Gornaya kniga», 2002, 152 p.

24. Prostov S. M., Gerasimov O. V., Nikulin N. Yu. Kompleksnyy geologo-geofizicheskiy monitoring protsessov uprochneniya gruntov [Complex geological and geophysical monitoring of soil hardening processes], Tomsk, TGU, 2015, 344 p.

25. Turchaninov I. A., Panin V. I. Geofizicheskie metody opredeleniya i kontrolya napryazheniy v massive [Geophysical methods for determining and controlling stresses in the array], Leningrad, Nauka, 1976, 164 p.

26. Khyamyalyaynen V. A., Prostov S. M., Syrkin P. S. Geoelektricheskiy kontrol' razrusheniya i in"ektsionnogo uprochneniya gornykh porod [Geoelectric control of destruction and injection hardening of rocks], Moscow, Nedra, 1996, 288 p.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.