Experimental studies on the performance parameters of elongated shaped charges of different configurations

The study was carried out in order to experimentally define parameters of the shaped charge jet and energy distribution in it. Experiments were performed using ultra-high-speed SFR-2M camera and shadow installation IAB-451. Performance parameters of elongated shaped charges with different cavity configurations were examined. Parameters of detonation waves in charges of different configurations were estimated. For charges of the ESC-7M, ESC-11M and ESC-13M types, it was found that the detonation velocities are determined by the density of the press-fitting of the compositions and range from 8200÷9000 m/s. Motion speed dependencies of charge shell material were established for different designs with and without taking into account material strength. Values of incidence angles between shaped charge jet front and lateral surface of the charge were identified. Developed mathematical model allows to determine parameters of the «jet-slug» system not only for the initial moment of system formation, but for each subsequent step up to system demolition. As a result of this study, it was proposed to expand the scope of the use of elongated shaped charges in mining, while such charges are often used only in special blasting.

Keywords: explosive, cumulation, elongated shaped charges, detonation velocity, cumulative knife, expansion velocity of the charge shell, numerical model, energy density
For citation:

Mysin A. V., Kovalevsky V. N., Dolzhikov V. V. Experimental studies on the performance parameters of elongated shaped charges of different configurations. MIAB. Mining Inf. Anal. Bull. 2022;(10):125-140. [In Russ]. DOI: 10.25018/0236_1493_2022_10_0_125.

Issue number: 10
Year: 2022
Page number: 125-140
ISBN: 0236-1493
UDK: 622.235
DOI: 10.25018/0236_1493_2022_10_0_125
Article receipt date: 14.06.2022
Date of review receipt: 08.08.2022
Date of the editorial board′s decision on the article′s publishing: 10.09.2022
About authors:

A.V. Mysin1, Cand. Sci. (Eng.), Senior Lecturer, e-mail: Mysin_AV@pers.spmi.ru, ORCID ID: 0000-0001-5968-8290,
V.N. Kovalevsky1, Cand. Sci. (Eng.), Assistant Professor, e-mail: Kovalevskiy_VN@pers.spmi.ru, ORCID ID: 0000-0002-7155-2000,
V.V. Dolzhikov1, Cand. Sci. (Eng.), Assistant Professor, e-mail: Dolzhikov_VV@pers.spmi.ru, ORCID ID: 0000-0001-8851-2913,
1 Saint-Petersburg Mining University, 199106, Saint-Petersburg, Russia.


For contacts:

A.V. Mysin e-mail: Mysin_AV@pers.spmi.ru.


1. Ho J., Lough C. S., Mulligan P., Kinzel E. C., Johnson C. E. Additive Manufacturing of Liners for Shaped Charges. AIP Conference Proceedings. 2020, vol. 2272, article 060018. DOI: 10.1063/12.0000845.

2. Duan B. F., Zhou Y. C., Zheng S. C. Blasting demolition of steel structure using linear cumulative cutting technology. Advances in Mechanical Engineering. 2017, vol. 9, no. 11. DOI: 10.1177/1687814017729089.

3. Burch B. Determining and mitigating the effects of fring a linear shaped charge under water. Masters Theses. Missouri University of Science and Technology. 2014, 91 p., available at: https://scholarsmine.mst.edu/masters_theses/7305.

4. Wojewódka A., Witkowski T. Methodology for simulation of the jet formation process in an elongated shaped charge. Combustion, Explosion, and Shock Waves. 2014, vol. 50, pp. 362— 367. DOI: 10.1134/S0010508214030150.

5. Bohanek V., Dobrilovic M., Skrlec V. Jet velocity of linear shaped charges. Mining-Geological-Petroleum Engineering Bulletin. 2012, vol. 25, no. 1, pp. 73—80.

6. Lim S. Jet velocity profile of linear shaped charges basedon an arced liner collapse. Journal of Energetic Materials. 2013, vol. 31, no. 4, pp. 239—250.

7. Gospodarikov A. P., Kovalevskiy V. N. Algorithm for calculating a fracture in a rock using an elongated hole shaped charge. Journal of Mining Institute. 2009, vol. 180, pp. 69—70. [In Russ].

8. Andreev R. E., Gridina E. B., Zhiharev S. Ja. Investigation of the formation of a directed split during the explosion of elongated explosive charges. News of the Tula state university. Sciences of Earth. 2018, no. 2. 203—214. [In Russ].

9. Afanasev P. I., Makhmudov K. F. Assessment of the parameters of a shock wave on the wall of an explosion cavity with the refraction of a detonation wave of emulsion explosives. Applied Science. 2021, vol. 11, no. 9, article 3976. DOI: 10.3390/app11093976.

10. Victorov S. B. The effect of Al2O3 phase transitions on detonation properties of aluminized explosives. 12th International Detonation Symposium. San Diego, USA, 2002, pp. 1—15.

11. Brown G. I. The Big Bang: A history of explosives. Stroud, Gloucestershire: Sutton Pub., 1998, 345 p.

12. Frantov A. E. Features of the action of charges with an axial cavity in wells. Journal of Mining Institute. 2008, vol. 171, pp. 226—229. [In Russ].

13. Norov Yu. D., Bunin Zh. V., Nutfullaev G. S., Zairov Sh. Sh. Intensification of blasting of different quality rock masses using explosive charges with cumulative effect. Gornyi Zhurnal. 2016, no. 2, pp. 16—20. [In Russ]. DOI: 10.17580/gzh.2016.02.03.

14. Garnov V. V. Optical instruments for registration of nuclear explosions. Istoriya atomnogo proekta, сsbornik statey. Vyp. 11 [History of the atomic project, collection of articles. Issue 11], Moscow, RNTs «Kurchatovskiy institut», 1997, pp. 75—81. [In Russ].

15. Garnov V. V., Goryunov B. G., Sicinskaya N. M. High-speed photographic equipment for registration of nuclear explosions and other fast processes. Fizika goreniya i vzryva. 2004, vol. 40, no. 6, pp. 132—137. [In Russ].

16. Menzhulin M. G., Shishov A. N., Seryshev C. B. Thermokinetic model of rock destruction and features of its numerical implementation. Fizika i mekhanika razrusheniya gornykh porod primenitel'no k prognozu dinamicheskikh yavleniy. 1995, pp. 59—65. [In Russ].

17. Andreev S. G., Boyko M. M. Estimation of TNT equivalent of detonating explosive gas. Inzhenernyy zhurnal: nauka i innovatsii. 2020, no. 2. [In Russ]. DOI: 10.18698/2308-6033-2020-2-1954.

18. Poylov V. V., Shirokov I. E., Murzin A. Y., Ganigin S. Y. Reliability verification method concerning the initiation of elongated cumulative charges in a metal shell. Journal of Engineering and Applied Sciences. 2016, vol. 11, no. 13, pp. 2920—2924. DOI: 10.3923/jeasci.2016.2920.2924.

19. Fomin V. M., Gulidov A. I., Sadyrin A. I. Vysokoskorostnoe vzaimodeystvie tel [Highspeed interaction of bodies], Novosibirsk, SO RAN, 1999, 600 p.

20. Vorobev V. V., Peev A. M., Slavko G. V. Change in the degree of elaboration of bench toe under the interaction of charges with various shape of bottom part. Scientific Bulletin of National Mining University. 2005, no. 3, pp. 31—33.

21. Trishin Ju. A. On some physical problems of cumulation. Prikladnaya mekhanika i tekhnicheskaya fizika. 2000, vol. 41, no. 5, pp. 10—26. [In Russ].

22. Fedorov S. V. On the implementation of the principle of implosion in shaped charges with hemispherical linings of degressive thickness. Herald of the Bauman Moscow State Technical University. Series Natural Sciences. 2017, no. 3, pp. 71—92. [In Russ]. DOI: 10.18698/18123368-2017-3-71-92.

23. Isheyskiy V. A., Dambaev Zh. G., Kovalevskiy V. N. On the issue of using directional charges that provide a safe resource-saving technology for the extraction of block stone. MIAB. Mining Inf. Anal. Bull. 2015, no. 7, pp. 498—509. [In Russ].

24. Menzhulin M. G., Nezametdinov A. B., Paramonov G. P. Destruction of oversized rocks using an explosive device. Explosion technology. 2005, no. 96/53, pp. 50—58. [In Russ].

25. Zhdanov I. V., Knyazev A. S., Malyarov D. V. Obtaining high-speed compact elements of the required masses with a proportional change in the size of cumulative devices. Trudy Tomskogo gosudarstvennogo universiteta. 2010, vol. 276, pp. 193–195. [In Russ].

26. Mitkov V. E., Belin V. A., Shishkov P. K. Insensitive and high-powered explosive material development to manufacture cumulative charge cutters. MIAB. Mining Inf. Anal. Bull. 2022, no. 5, pp. 108–120. [In Russ]. DOI: 10.25018/0236_1493_2022_5_0_108.

27. Fedorov S. V., Ladov S. V., Nikol'skaja Ja. M. Comparative analysis of the formation of cumulative jets from conical and hemispherical liners. Engineering Journal: Science and Innovation. 2018, no. 1. [In Russ]. DOI: 10.18698/2308-6033-2018-1-1720.

28. Fedorov S. V., Bayanova Ya. M., Ladov S. V. Numerical analysis of high-velocity element formation upon implosion of combined semisphere-cylinder liners. 26th International Symposium on Ballistics. Miami, Florida, USA, 2011, vol. 1, pp. 253—265.

29. Baker E. L., Daniels A. S. Selectable initiation shaped charges. 20th International Symposium on Ballistics. Florida, USA, 2002, pp. 436—449.

30. Ghoshal R., Mitra N. Underwater explosion induced shock loading of structures: influence of water depth, salinity and temperature. Ocean Engineering. 2016, vol. 126, pp. 22—28.

31. Epifanov V. B., Kiryakov G. E., Medvedev A. V., Ziborov A. B., Kuznecov A. A. Utilization of energy-rich materials. Journal of Mining Institute. 2001, vol. 149, pp. 197—199. [In Russ].

32. Menzhulin M. G., Trofimov A. V., Zaharyan M. V. Two-stage destruction of oversized pieces by overhead and shaped charges of explosives placed in a protective device. Explosion technology. 2009, no. 102/59, pp. 129—137. [In Russ].

33. Kotomln A. A., Nephedoff М. A., Uryaev V. N. «Granilen» elastic tube charges — a new cartridge for pin-point demolition blasting. Fourth International (JSRM Regional) Rock Fragmentation by Blasting «FRAGBLAST-4», Vienna, Austria, 1993, pp. 425—431.

34. Oveshnikov Yu. M., Avdeev P. B., Guseynov T. Z. Distinctive features of mining at Mnogovershinnoe deposit composed of thin gold veins. MIAB. Mining Inf. Anal. Bull. 2018, no. 4, pp. 91—98. [In Russ]. DOI: 10.25018/0236-1493-2018-4-0-91-97.

35. Chernobryvko M. V., Avramov K., Uspensky B. Model of segmentation of rocket fairings due to the action of a cumulative charge. EPJ Web of Conferences. 2018, vol. 183, article 04009. DOI: 10.1051/epjconf/201818304009.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.