Investigation of mass transfer of hard coal during its transportation to the place of temporary storage

It is shown that the residual content of methane gas in coal segments is determined, on the one hand, by the initial value of methane content in the seam being mined, and on the other hand, by the conditions of coal transportation to the place of temporary storage. It is noted that the dynamics of coal methane content during its transportation to temporary storage depots depends on the intensity of mass transfer processes between coal and air. This paper describes the thermogravimetric method of establishing the parameters of mass transfer in fossil coals, which is based on the study of methane desorption from the porous structure of hard coal under laboratory conditions. It is shown that this method is expected to register the change in the mass of the sample under conditions of programmed change in the temperature of the medium in the given parameters. MOC-120H thermogravimetry setup is described, which consists of continuous weighing devices (thermo-weighers-moisture meters); a furnace in which the sample is placed; infrared sensors registering the temperature (thermocouples); a program temperature controller. The study was carried out for 5 samples. The obtained measurement results are presented in the form of time dependences of mass transfer coefficients (effective diffusion coefficient and activation energy) on the ambient temperature in the range from 30 °C to 70 °C.

Keywords: coal, hard coal transportation, coal storag, methane, residual methane content, methane desorption, mass transfer parameters, thermogravimetric desorption method, effective methane diffusion coefficient, activation energy, Arrenius equation.
For citation:

Gendler S. G., Vasilenko T. A., Stepantsova A. Yu. Investigation of mass transfer of hard coal during its transportation to the place of temporary storage. MIAB. Mining Inf. Anal. Bull. 2023;(9-1):135-148. [In Russ]. DOI: 10.25018/0236_1493_2023_91_0_135.

Issue number: 9
Year: 2023
Page number: 135-148
ISBN: 0236-1493
UDK: 331.4
DOI: 10.25018/0236_1493_2023_91_0_135
Article receipt date: 06.04.2023
Date of review receipt: 07.08.2023
Date of the editorial board′s decision on the article′s publishing: 10.08.2023
About authors:

S.G. Gendler1, Dr. Sci. (Eng.), Professor, e-mail:, ORCID ID: 0000-0002-7721-7246,
T.A. Vasilenko1, Dr. Sci. (Eng.), Chief Researcher, e-mail:, ORCID ID: 0000-0003-4290-1520,
A.Yu. Stepantsova1, Graduate Student, e-mail:, ORCID ID: 0000-0002-5027-4742,
1 Saint-Petersburg Mining University, 199106, Saint-Petersburg, Russia.


For contacts:

A.Yu. Stepantsova, e-mail:


1. Kornev A. V., Korneva M. V., Safina A. M. The role of the dust factor in ensuring industrial safety and labor protection at enterprises of the coal mining industry. MIAB. Mining Inf. Anal. Bull. 2015, no. S60-2, pp. 322—334. [In Russ].

2. Korshunov G. I., Spitsyn A. A., Bazhenova V. A. Development of a method to reduce the release of respirable dust fraction into the atmosphere at the expense of reclamation of dust sources. Occupational Safety in Industry. 2022, no. 6, pp. 27—32. [In Russ]. DOI: 10.24000/04092961-2022-6-27-32.

3. Smirnyakov V. V., Rodionov V. A., Smirnyakova V. V., Orlov F. A. Effect of shape and size of dust fractions on their distribution and accumulation in mine workings when changing the structure of air flow. Journal of Mining Institute. 2022, vol. 253, pp. 71—81. [In Russ]. DOI: 10.31897/PMI.2022.12.

4. Meshkov G. B., Petrenko I. E., Gubanov D. A. Results of the work of the coal industry of Russia for January — March 2023. Ugol'. 2023, no. 6, pp. 5—12. [In Russ].

5. Astafurov N. A. Coal transportation in Russia. Scientific forum. Siberia. 2015, no. 1, pp. 84—85. [In Russ].

6. Khokholov Yu. A., Gavrilov V. L., Fedorov V. I. Mathematical modeling of heat-exchange processes of frozen coal storage in open warehouses. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopaemykh. 2019, no. 6, pp. 172—182. [In Russ]. DOI: 10.15372/FTPRPI20190617.

7. Romanchenko S. B., Naganovsky Y. K., Kornev A. V. Innovative ways of controlling dust explosion safety of mine workings. Journal of Mining Institute. 2021, vol. 250, pp. 927—936. [In Russ]. DOI: 10.31897/PMI.2021.6.14

8. Moskovaya I. V., Lazareva L. P. Analysis of the efficiency of wind-dust shields application at open warehouses of coal terminals. Eurasian Union of Scientists. 2015, no. 6-2 (15), pp. 140—144. [In Russ].

9. Almukhametova S. G. Transition of open coal warehouses to closed ones as a solution to the problem of dust emissions into the environment. Materialy XIX molodezhnoy mezhdunarodnoy nauchno-prakticheskoy konferentsii studentov, aspirantov i molodykh uchenykh [Proceedings of the XIX youth international scientific-practical conference of students, graduate students and young scientists], Saint-Petersburg, 2020, pp. 25—28. [In Russ].

10. Zubov V. P., Golubev D. D. Prospects of using modern technological solutions for mining flat coal seams taking into account the danger of formation of pockets of self-ignition. Journal of Mining Institute. 2021, vol. 250, pp. 534—541. [In Russ]. DOI: 10.31897/PMI.2021.4.6.

11. Rodionov V. A., Tursenev S. A., Skripnik I. L., Ksenofontov Y. G. Results of the study of kinetic parameters of spontaneous combustion of coal dust. Journal of Mining Institute. 2020, vol. 246, pp. 617—622. [In Russ]. DOI: 10.31897/PMI.2020.6.3.

12. Kornev A. V., Spitsyn A. A., Korshunov G. I., Bazhenova V. A. Preventing dust explosions in coal mines: Methods and current trends. MIAB. Mining Inf. Anal. Bull. 2023, no. 3, pp. 133—149. [In Russ]. DOI: 10.25018/0236_1493_2023_3_0_133.

13. Rodionov V. A., Tsygankov V. D., Zhikharev S. Ya., Kormshchikov D. S. Research procedure for coal dust aerodynamics in long roadways. MIAB. Mining Inf. Anal. Bull. 2021, no. 10, pp. 69—79. [In Russ]. DOI: 10.25018/0236_1493_2021_10_0_69.

14. Smirnov V. G., Manakov A. Y., Dyrdin V. V. Activation energy of decomposition and formation of methane hydrates in pores of natural coal. Bulletin of the Kuzbass State Technical University. 2014, pp. 24—28. [In Russ].

15. Vasilenko T. A., Kirillov A. K., Shazhko Y. V., Voloshina N. I. Scaling representation of methane desorption from natural sorbent. Fizika i tekhnika vysokikh davleniy. 2007, vol. 17, no. 4, pp. 91—99. [In Russ].

16. Demchenko V. B., Kolesnikov V. G. Studies of gravitational stratification of a methane-air mixture. MIAB. Mining Inf. Anal. Bull. 2001. Symposium «Miner's Week», pp. 1—3. [In Russ].

17. Gaidarov B. A. Review of the main characteristics of the experimental methods for measuring the methane diffusion coefficient of coal seams. Proceedings of the Institute of Geology, Dagestan Scientific Center, RAS. 2022, no. 4(91), pp. 24—31. [In Russ]. DOI: 10.33580/25419684-2022-91-4-24-31.

18. Qing-Wei Li, Yang Xiao, Cai-Ping Wang, Jun Deng, Chi-Min Shu Thermokinetic characteristics of coal spontaneous combustion based on thermogravimetric analysis. Fuel. 2019, vol. 250, pp. 235—244. DOI: 10.1016/j.fuel.2019.04.003.

19. Usenbekov M. S., Isabek T. K., Polchin A. I., Zhumabekova A. E. Methane emission dynamics in mining in zones of geological faults. MIAB. Mining Inf. Anal. Bull. 2022, no. 12, pp. 141—151. [In Russ]. DOI: 10.25018/0236_1493_2022_12_0_141.

20. Smirnyakov V. V., Smirnyakova V. V., Pekarchuk D. S., Orlov F. A. Analysis of methane and dust explosions in modern coal mines in Russia. International Journal of Civil Engineering and Technology. 2019, vol. 10, no. 2, pp. 1917—1929.

21. Sikarev S. S., Adamov E. I., Smirnov S. G., Lipatov I. V., Lyudmilin M. M. Development of a mathematical model of behavior of air flows in the therritory of open port coal warehouses. Russian Journal of Water Transport. 2020, no. 62, pp. 20—26. DOI: 10.37890/jwt.vi62.37.

22. Starikov G. P., Yurchenko V. M., Melnik T. N., Khudolei O. G., Kravchenko A. V. Activation of methane diffusion in coal under the influence of changing mechanical and thermodynamic parameters of the formation. Fizika i tekhnika vysokikh davleniy. 2019, no. 3, pp. 122—130. [In Russ].

23. Shaposhnik V. A. Activation energies of ion-exchange processes. Sorption and Chromatographic Processes. 2022, vol. 22, no. 5, pp. 622—629. [In Russ]. DOI: 10.17308/sorpchrom.2022.22/10683.

24. Gigrin A. V., Pozdniakov G. A. Novoseltsev A. I. Prevention and localization of gas and dust explosions in coal mines. Occupational Safety in Industry. 2009, no. 4, pp. 22—26. [In Russ].

25. Mukhanov A., Mostepanov E., Ilchenko G. Industrial safety of coal industry. Energonadzor. 2015, no. 10, pp. 21—27. [In Russ].

26. Borowski G., Smirnov Y. D., Ivanov A. V., Danilov A. S. Effectiveness of carboxymethyl cellulose solutions for dust suppression in the mining industry. International Journal of Coal Preparation and Utilization. 2020, vol. 42, no. 8, pp. 2345—2356. DOI: 10.1080/19392699.2020.1841177.

27. Zaburdyaev V. S., Podobrazhin S. N., Skatov V. V. Mine methane and coal dust: the formation of explosive situations. Occupational Safety in Industry. 2016, no. 2, pp. 42—46. [In Russ].

28. Biliaiev M. M., Karpo A. A., Yakubovska Z. M. Reducing the intensity of takeaway pulverized coal by using special solution. Science and Transport Progress Bulletin of Dnipropetrovsk National University of Railway Transport. 2017, no. 2(68), pp. 8—15. DOI: 10.15802/ stp2017/99742.

29. Goncharov E. V., Tsirel S. V. Geodynamic methods for assessing the methane distribution in coal deposits and measures for the intensification of methane flow during borehole degassing methods. Journal of Mining Institute. 2016, vol. 222, pp. 803—808. [In Russ].

30. Kolesnichenko I. E., Artemiev V. B., Kolesnichenko E. A. Justification of energy indicator of formation explosiveness and explosive concentrations of coal dust in mine workings. Promyshlennaya bezopasnost'. 2016, no. 2, pp. 32—35. [In Russ].

31. Litvishkov Yu. N. On the physical meaning of the parameters of the Arrhenius equation. Kimya Problemleri. 2019, no. 3, pp. 28—37. [In Russ].

32. Mustafin M. G. Modeling of the geomechanical state of the rock mass during methane extraction from coal seams. Journal of Mining Institute. 2015, vol. 216, pp. 57—61. [In Russ].

33. Liu Y., Zhang C., Zhang Y. Evolution mechanism of methane adsorption capacity in vitrinite-rich coal during coalification. Journal of Natural Gas Science and Engineering. 2021, vol. 96, no. 1, pp. 104—107. DOI: 10.1016/j.jngse.2021.104307.

34. Pozdnyakov G. A., Dikolenko E. Y., Myasnikov S. V. On the effectiveness of dust and explosion protection of mine workings of coal mines. Occupational Safety in Industry. 2012, no. 12, pp. 45—48. [In Russ].

35. Golynets O. S., Sergeeva A. S., Nikonova T. A., Epstein S. A. Prospects of infrared thermogravimetric moisture meters to determine the total moisture of solid mineral fuels. MIAB. Mining Inf. Anal. Bull. 2015, no. S60-2, pp. 118—129. [In Russ].

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.