Electrokinetic recovery of soil in case of poly-element contamination

Poly-element soil contamination is one of the major problems in the areas of high mining activities and large urban agglomerations. The article describes the lab-scale testing of electrokinetic removal of zinc, lead, copper and nickel from soil. The test soil samples were taken in an area exposed to the intense mining-induced loading. The tests were carried out in an electrochemical reactor for 24, 120 and 240 hours. The test soil samples feature the increased gross contents of heavy metals: Cu–1256.0, Pb–269.14, Ni–965.82 and Zn–2421.75 mg/kg. In addition, the forms of heavy metals were determined using Tessier’s method. The studies show that during electrochemical recovery for 24 h, the gross content of heavy metals drops by 82–97% on the average. As a result of the electric current effect on a soil solution and owing to internal movement of ions, re-grouping of forms of heavy metals takes place. Amongst the forms of copper and zinc, a considerable increase is observed in their number in connection with organic substance, while for zinc and nickel, the non-specifically adsorbed and exchange forms prevail. The studies also revealed the nonuniformity and different recoverability of heavy metals in the conditions of concurrence during reactions of formations of compounds of different-mobility metals. The research findings can facilitate development and improvement of methods based on electrochemical removal of heavy metals from soils in case of their poly-element contamination.

Keywords: soil contamination, heavy metals, technogenesis, electrochemical soil recovery, forms of heavy metals, fractions of heavy metals, copper, lead, nickel, zinc.
For citation:

Shabanov M. V., Marichev M. S., Minkina T. M., Sokolov A. A., Mandzhieva S. S. Electrokinetic recovery of soil in case of poly-element contamination. MIAB. Mining Inf. Anal. Bull. 2025;(6):94-108. [In Russ]. DOI: 10.25018/0236_1493_2025_6_0_94.

Acknowledgements:

The study was carried out with the financial support of the Ministry of Science and Higher Education of the Russian Federation within the framework of the state assignment in the field of scientific activity, No. FENW-2023-0008, and the Strategic Academic Leadership Program of the Southern Federal University («Priority 2030»).

Issue number: 6
Year: 2025
Page number: 94-108
ISBN: 0236-1493
UDK: 504.062.4: 504.53: 628.349.087
DOI: 10.25018/0236_1493_2025_6_0_94
Article receipt date: 12.02.2025
Date of review receipt: 26.03.2025
Date of the editorial board′s decision on the article′s publishing: 10.05.2025
About authors:

M.V. Shabanov1, Cand. Sci. (Agr.), Assistant Professor, Assistant Professor, e-mail: geohim.spb@gmail.com, Scopus Author ID: 35171489500, ORCID ID: 0000-0003-4725-3673,
M.S. Marichev1, Cand. Sci. (Biol.), Head of Laboratory, e-mail: m.s.marichev@yandex.ru, Scopus Author ID: 57216298057, ORCID ID: 0000-0003-0429-2234,
T.M. Minkina2, Dr. Sci. (Biol.), Professor, Head of Chair, e-mail: minkina@sfedu.ru, Scopus Author ID: 15063165400, ORCID ID: 0000-0003-3022-0883,
A.A. Sokolov, Cand. Sci. (Eng.), Assistant Professor, Head of Chair, Branch of Southern Federal University in Gelendzhik, Gelendzhik, Russia, e-mail: anso@sfedu.ru,  ORCID ID: 0000-0002-1127-9612,
S.S. Mandzhieva2, Cand. Sci. (Biol.), Chief Researcher, e-mail: msaglara@sfedu.ru, Scopus Author ID: 24481495200, ORCID ID: 0000-0001-3022-6000-2209,
1 Saint-Petersburg State Agrarian University, 196607, Pushkin, Russia,
2 Southern Federal University, 344006, Rostov-on-Don, Russia.

 

For contacts:

M.S. Marichev, e-mail: m.s.marichev@yandex.ru.

Bibliography:

1. Kabata-Pendias A., Pendias H. Trace elements in soils and plants. CRC Press, Boca Raton, FL. 1992, 365 p.

2. Patrick W. H. Jr., Verloo M. Distribution of soluble heavy metals between ionic and complexed forms in a saturated sediment as affected by pH and redox conditions. Water Science and Technology. 1998, vol. 37, pp. 165—172. DOI: 10.1016/S0273-1223(98)00256-X.

3. Sokolov D. A., Ivanova I. S., Siromlya T. I. Content and mobility metals in oligotrophic peat soils of the cryolithozone of Western Siberia. Pochvovedenie. 2023, no. 12, pp. 1612—1627. [In Russ]. DOI: 10.31857/S0032180X23600786.

4. Rasafi T. El., Haouas A., Tallou A., Chakouri M., Aallam Y., Moukhtari A. El., Hamamouch N., Hamdali H., Oukarroum A., Farissi M., Haddioui A. Recent progress on emerging technologies for trace elements-contaminated soil remediation. Chemosphere. 2023, vol. 341, article 140121. DOI: 10.1016/j. chemosphere.2023.140121.

5. Ma M., Ha Z., Xu X., Lv C., Li C., Du D., Chi R. Simultaneous immobilization of multiple heavy metals in polluted soils amended with mechanical activation waste slag. Science of the Total Environment. 2023, vol. 894, article 164730. DOI: 10.1016/j.scitotenv.2023.164730.

6. Jelusic M., Vodnik D., Macek I., Lestan D. Effect of EDTA washing of metal polluted garden soils. Part II: Can remediated soil be used as a plant substrate? Science of the Total Environment. 2014, vol. 475, pp. 142—152. DOI: 10.1016/j.scitotenv.2013.11.111.

7. Wu Y., Wang X., Zhang X., Lu Y., Chen M., Sun Y., Ye P. Experimental study on remediation of low permeability Cu—Zn contaminated clay by vacuum enhanced leaching combined with EDTA and hydrochloric acid. Chemosphere. 2022, vol. 298, article 134332. DOI: 10.1016/j.chemosphere.2022.134332.

8. Dermont G., Bergeron M., Mercier G., Richer-Laflèche M. Soil washing for metal removal: a review of physical/chemical technologies and field applications. Journal of Hazardous Materials. 2008, vol. 152, no. 1, pp. 1—31. DOI: 10.1016/j.jhazmat.2007.10.043.

9. Bridle T., Skrypski-Mantele S. Assessment of sludge reuse options: a life-cycle approach. Water Science and Technology. 2000, vol. 41, pp. 131—135. DOI: 10.2166/wst.2000.0152.

10. Garbaciak S., Spadaro P., Thornburg T., Fox R. D. Garbaciak S., Spadaro P., Fox T. R. Sequential risk mitigation and the role of natural recovery in contaminated sediment projects. Water Science and Technology. 1998, vol. 37, pp. 331—336. DOI: 10.1016/S0273-1223(98)00215-7.

11. Stichnothe H., Thöming J., Calmano W. Detoxification of tributyltin contaminated sediments by an electrochemical process. Science of the Total Environment. 2001, vol. 266, pp. 265—271. DOI: 10.1016/s0048-9697(00)00751-8.

12. Shabanov M. V., Marichev M. S., Burachevskaya M. V., Kirichkov M. V., Tsitsuashvili V. S. Current condition of acid sulfate water of the Karabash geotechnogenesis system. MIAB. Mining Inf. Anal. Bull. 2025, no. 3, pp. 108—124. [In Russ]. DOI: 10.25018/0236_1493_2025_3_0_108.

13. Kulikova E. Yu., Balovtsev S. V., Skopintseva O. V. Comprehensive assessment of geoecological risks in conducting open and underground mining. Sustainable Development of Mountain Territories. 2024, vol. 16, no. 1, pp. 205—216. [In Russ]. DOI: 10.21177/1998-4502-2024-16-1-205-216.

14. Shabanov M. V., Marichev M. S., Minkina T. M., Mandzhieva S. S., Nevidomskaya D. G. Assessment of the impact of industry-related air emission of arsenic in the soils of forest ecosystems. Forests. 2023, vol. 14, article 632. DOI: 10.3390/f14030632.

15. Tessier P. G. C., Campbell M. Bisson Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry. 1979, vol. 51, pp. 844—851. DOI: 10.1021/AC50043A017.

16. Anfilogov V. N., Kabanova L. Y., Ryzhkov V. M., Korekina M. A. Geological structure of the Karabash ore district (Southern Urals). Lithosphere. 2020, vol. 20, no. 5, pp. 682—689. [In Russ]. DOI: 10.24930/1681-9004-2020-20-5-682-689.

17. Rudnick R. L., Gao S. Composition of the continental crust. Treatise on geochemistry (2nd edition). Amsterdam, Elsevier, 2003, 64 p. DOI: 10.1016/B978-0-08-095975-7.00301-6.

18. Kim S. H., Han H. Y., Lee Y. J., Kim C. W., Yang J. W. Effect of electrokinetic remediation on indigenous microbial activity and community within diesel contaminated soil. Science of the Total Environment. 2010, vol. 408, no. 16, pp. 3162—3168. DOI: 10.1016/j.scitotenv.2010.03.038.

19. Kwan W. P., Voelker B. M. Decomposition of hydrogen peroxide and organic compounds in the presence of dissolved iron and ferrihydrite. Environmental Science & Technology. 2002, vol. 36, no. 7, pp. 1467—1476. DOI: 10.1021/es011109p. PMID: 11999052.

20. Shabanov M. V., Marichev M. S., Mangiyeva S. S., Sokolov A. A. Chemozem formation under conditions of prolong exposure to aero-industrial emissions from a mining and smelting plant. Sustainable Development of Mountain Territories. 2023, vol. 15, no. 3, pp. 727—740. [In Russ]. DOI: 10.21177/1998-4502-2023-15-3-727-740.

21. Sobolev A. E., Lutsik V. I., Potashnikov Yu. M. The kinetics of the oxidation of iron(II) persulfide (pyrite) in solutions of hydrogen peroxide. Russian Journal of Physical Chemistry. 2002, vol. 76, no. 5, pp. 842—845. [In Russ].

22. Petigara B. R., Blough N. V., Mignerey A. C. Mechanisms of hydrogen peroxide decomposition in soils. Environmental Science & Technology. 2002, vol. 36, no. 4, pp. 639—645. DOI: 10.1021/ es001726y. PMID: 11878378.

23. Millero F. J., Johnson R. L., Vega C. A. Effect of ionic interactions on the rates of reduction of Cu(II) with H2O2 in aqueous solutions. Journal of Solution Chemistry. 1992, vol. 21, pp. 1271—1287. DOI: 10.1007/BF00667222.

24. Uren N. C. Forms, Reactions, and Availability of Nickel in Soils. Advances in Agronomy. 1992, vol. 48, pp. 141—203. DOI: 10.1016/S0065-2113(08)60937-2.

25. Ghobadi R., Altaee A., Zhou J. L., Karbassiyazdi E., Ganbat N. Effective remediation of heavy metals in contaminated soil by electrokinetic technology incorporating reactive filter media. Science of the Total Environment. 2021, vol. 794, article 148668. DOI: 10.1016/j.scitotenv.2021.148668.

26. Fomenko V. A., Sokolov A. A., Lolaev A. B., Aimbetova I. O. Some results of the work on the evaluation of radon emanations at Unal tailings. Sustainable Development of Mountain Territories. 2022, vol. 14, no. 4, pp. 576—585. [In Russ]. DOI: 10.21177/1998-4502-2022-14-4-576-585.

27. Burachevskaya M. V., Minkina T. M., Mandzhieva S. S., Bauer T. V., Kirichkov M. V., Nevidomskaya D. G., Zamulina I. V. Effect of soil buffer capacity on the transformation of lead and cadmium compounds. Pochvovedenie. 2024, no. 7, pp. 936—949. [In Russ]. DOI: 10.31857/S0032180X24070029.

28. Gomes P. C., Fontes M. P. F., da Silva A. G., Mendonça S. E., Netto A. R. Selectivity sequence and competitive adsorption of heavy metals by Brazilian soils. Soil Science Society of America Journal. 2001, vol. 65, pp. 1115—1121. DOI: 10.2136/sssaj2001.6541115x.

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.