Physical modeling of stress-strain behavior of honeycomb mine structures composed of vertical cylindrical stopes

The article describes physical modeling of the stress–strain behavior of a honeycomb mine structure composed of vertical cylindrical stopes with pillars in-between. It is found that it is impossible to prepare an equivalent material to simulate rock salt in physical models as no analogy of properties of these materials is observed in this case. In this respect, the qualitative analysis of physical modeling data is proposed. The fracture loads of physical models are determined. The obtained patterns are presented: with wider stopes and pillars, the strength of enclosing rock mass and intra-stope pillars increases; the lesser strength is regularly observed when the width of pillars is decreased while the width of stopes is unchanged. The physical and numerical modeling results are compared. In case of the honeycomb mine structure composed of vertical cylindrical stopes, stability of pillars between the stopes (as against conventional columnar and chain pillars) is ensured by the presence of the side thrust between the side faces of the neighbor pillars, and by the most favorable shape of the structural components of the mine–cylindrical shape of vertically arranged stopes–which are sufficiently stable under the action of rock pressure (the phenomenon when effective stresses flow around the vertical cylindrical stopes through the inter-stope pillars).

Keywords: Turner–Shevyakov hypothesis, physical and numerical modeling, honeycomb mine structure, inter-stope pillar, vertical cylindrical stope, fracture loads, rock salt deposit.
For citation:

Kosyreva M. A., Eremenko V. A. Physical modeling of stress-strain behavior of honeycomb mine structures composed of vertical cylindrical stopes. MIAB. Mining Inf. Anal. Bull. 2024;(10):22-34. [In Russ]. DOI: 10.25018/0236_1493_2024_10_0_22.

Acknowledgements:
Issue number: 10
Year: 2024
Page number: 22-34
ISBN: 0236-1493
UDK: 622.831; 622,2; 622.235
DOI: 10.25018/0236_1493_2024_10_0_22
Article receipt date: 28.06.2024
Date of review receipt: 22.07.2024
Date of the editorial board′s decision on the article′s publishing: 10.09.2024
About authors:

M.A. Kosyreva1, Graduate Student, e-mail: marinkosyreva@gmail.com,
V.A. Eremenko1, Dr. Sci. (Eng.), Professor of the Russian Academy of Sciences, Director of Research Center for Applied Geomechanics and Convergent Geotechnologies, Professor, e-mail: prof.eremenko@gmail.com,
1 NUST MISIS, 119049, Moscow, Russia.

 

For contacts:

M.A. Kosyreva, e-mail: marinkosyreva@gmail.com.

Bibliography:

1. Galchenko Yu. P., Eremenko V. A. Prirodno-tekhnicheskie sistemy podzemnoy razrabotki rudnykh mestorozhdeniy na osnove konvergentnykh gornykh tekhnologiy: Monografiya. 2-e izd., dop. i pererab. [Natural-technical systems of underground ore mining using convergent geotechnologies. Monograph. 2nd edition, revised and enlarged], Moscow, Izd-vo «Gornaya kniga», 2023, 288 p.

2. Trubetskoy K. N., Galchenko Yu. P. Prirodopodobnaya geotekhnologiya kompleksnogo osvoeniya nedr: problemy i perspektivy [Nature-like geotechnology of integrated subsoil management: Problems and prospects], Moscow, Nauchtekhlitizdat. 2020, 368 p.

3. Trubetskoy K. N., Galchenko Yu. P. Geoekologiya osvoeniya nedr i ekogeotekhnologiya razrabotki mestorozhdeniy [Geoecology of subsoil management and ecogeotechnology of mineral mining], Moscow, Nauchtekhlitizdat. 2015, 360 p.

4. Eremenko V. A., Vinnikov V. A., Pugach A. S., Kosyreva M. A. Substantiation of rib pillar sizes for rock salt mining in vertical cylindrical stopes arranged at the nodes of regular triangular pattern. Eurasian Mining. 2023, no. 2, pp. 56—62. DOI: 10.17580/em.2023.02.12.

5. Eremenko V. A., Vinnikov V. A., Pugach A. S., Kosyreva M. A. Substantiation of rib pillar sizes for rock salt mining in vertical cylindrical stopes. Gornyi Zhurnal. 2024, no. 1, pp. 29—38. [In Russ].

6. Shevyakov L. D. Calculation of strong sizes and deformations for support pillars. Izd. AN SSSR. 1941, no. 7-8, pp. 3—16. [In Russ].

7. Shevyakov L. D. Razrabotka mestorozhdeniy poleznykh iskopaemykh [Mineral mining], Moscow, Ugletekhizdat, 1953, 756 p.

8. Borshch-Komponiets V. I. Prakticheskaya geomekhanika gornykh porod [Practical geomechanics of rocks], Moscow, Izd-vo «Gornaya kniga», 2013, 322 p.

9. Gulevich G. E. Ratsional'nyy poryadok raspolozheniya i optimal'nye razmery podderzhivayushchikh tselikov pri kamerno-stolbovoy sisteme razrabotki [Rational arrangement and optimal sizes of support pillars in room-and-pillar mining], Moscow, OBNTI Giprotsvetmet, 1959, 30 p.

10. Sidorov D. V., Ponomarenko T. V. Estimation methodology for geodynamic behavior of natureand-technology systems in implementation of mineral mining projects. Gornyi Zhurnal. 2020, no. 1, pp. 49—52. [In Russ].

11. Lomakin I. S., Tsayukov A. A., Evseev A. V. Physical and mathematical modeling of deformation and failure of rib pillars. Perm federal Research Center Journal. 2021, no. 1, pp. 47—53. [In Russ].

12. Rib S. V., Govorukhin Yu. M. Integrated geomechanical research method with integration of physical and numerical modeling. News of the Tula state university. Sciences of Earth. 2018, no. 2, pp. 363—378. [In Russ].

13. Boguslavsky E. I., Zuev B.Yu., Korzhavykh P. V. Physical modeling of rib pillar stability. A casestudy of Gubkin Mine. Journal of Mining Institute. 2014, vol. 207, pp. 17—21. [In Russ].

14. Litvinenko V. S., Boguslavsky E. I., Korzhavykh P. V. Physical and mathematical modeling of room-and-pillar mining parameters at lower level in Gubkin Mine. Journal of Mining Institute. 2012, vol. 195, pp. 115—119. [In Russ].

15. Kosyreva M. A., Eremenko V. A. Numerical stress-strain modeling of honeycomb mine structures with vertical stopes of cylindrical form. Eurasian Mining. 2024, no. 1, pp. 36—39. DOI: 10.17580/em.2024.01.09.

16. Zhengzheng Xie, Nong Zhang, Xiaowei Feng, Dongxu Liang, Qun Wei, Mingyue Weng Investigation on the evolution and control of surrounding rock fracture under different supporting conditions in deep roadway during excavation period. International Journal of Rock Mechanics and Mining Sciences. 2019, vol. 123, article 104122. DOI: 10.1016/j. ijrmms.2019.104122.

17. Islavath S. R., Deb D., Kumar H. Development of a roof-to-floor convergence index for longwall face using combined finite element modelling and statistical approach. International Journal of Rock Mechanics and Mining Sciences. 2020, vol. 127, pp. 204—221. DOI: 10.1016/j. ijrmms.2020.104221.

18. Fei Wu, Hao Zhang, Quanle Zou, Cunbao Li, Jie Chen, Renbo Gao Viscoelastic-plastic damage creep model for salt rock based on fractional derivative theory. Mechanics of Materials. 2020, vol. 150, pp. 1—14. DOI: 10.1016/j.mechmat.2020.103600.

19. Jianqiang Deng, Yaoru Liu, Qiang Yang, Wei Cui, Yinbang Zhu, Yi Liu, Bingqi L. A viscoelastic, viscoplastic, and viscodamage constitutive model of salt rock for underground energy storage cavern. Computers and Geotechnics. 2019, vol. 119, pp. 1—14. DOI: 10.1016/j.compgeo.2019.103288.

20. Huang Xiao Lan, Chao Yu Studies of hard interlayer’s influence on the creep deformation of salt rock cavity. Advanced Materials Research. 2012, vol. 594—597, pp. 452—455. DOI: 10.4028/ www.scientific.net/amr.594-597.452.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.