Flotation of low-grade alumina-containing material

The article describes the studies on flotation of an alumina-containing material with silica and iron impurities. It is found that the amount of impurities represented by iron and silicon oxides exceeds the standards imposed on a by-product suitable for manufacturing aluminum through electrolysis. By-product processability was estimated via lab-scale testing of optimized reagent regimes for flotation of a product with the specified qualities. The tests proved efficient operation of the collecting agent Amin RA-14 with the frother MIBC. The correction and optimization of the reagent regime used the correlation and regression analyses of the collected data. The obtained model calculated the content of impurities in spent pot lining. The optimized concentration of the reagents is: 275 g/t Amin RA-14 and 25 g/t MIBC. The optimized reagent regime was used in experimental flotation of spent pot lining up to standard production data. The experimental data of the flotation by-product were: ferric oxide content of 0.33%, silicon oxide content of 0.4%, yield of 15.68%.

Keywords: aluminum-containing spent pot lining, flotation, silicon oxides, ferric oxides, collecting reagents, frother, mathematical model.
For citation:

Burdonov A. E., Sakhabutdinova T. Kh., Barakhtenko V. V., Skvortsov D. E., Zelinskaya E. V. Flotation of low-grade alumina-containing material. MIAB. Mining Inf. Anal. Bull. 2025;(8):114-126. [In Russ]. DOI: 10.25018/0236_1493_2025_8_0_114.

Acknowledgements:
Issue number: 8
Year: 2025
Page number: 114-126
ISBN: 0236-1493
UDK: 669.712.5
DOI: 10.25018/0236_1493_2025_8_0_114
Article receipt date: 30.07.2024
Date of review receipt: 11.03.2025
Date of the editorial board′s decision on the article′s publishing: 10.07.2025
About authors:

A.E. Burdonov1, Cand. Sci. (Eng.), Assistant Professor, Assistant Professor, e-mail: burdonovae@ex.istu.edu, ORCID ID: 0000-0002-5356-0349,
T.Kh. Sakhabutdinova1, Graduate Student, Junior Researcher, e-mail: statyana411@gmail.com, ORCID ID: 0009-0003-3872-0572,
V.V. Barakhtenko1, Cand. Sci. (Eng.), Assistant Professor, e-mail: vbarakhtenko@ex.istu.edu, ORCID ID: 0000-0002-5356-0349,
D.E. Skvortsov1, Graduate Student, Engineer, e-mail: daniil-skvorcov@mail.ru, ORCID ID: 0009-0002-6980-056X,
E.V. Zelinskaya1, Dr. Sci. (Eng.), Professor, Professor, e-mail: zelinskaelena@mail.ru, ORCID ID: 0000-0002-3411-8889,
1 Irkutsk National Research Technical University, 664074, Irkutsk, Russia.

 

For contacts:

A.E. Burdonov, e-mail: burdonovae@ex.istu.edu.

Bibliography:

1. Dementieva A. S. World market of non-ferrous metals: Place and role of Russia. The Financial economy. 2022, no. 5, pp. 106—108. [In Russ].

2. Gorlanov E. S., Brichkin V. N., Polyakov A. A. Electrolytic production of aluminum. Review. Part 1. Traditional directions of development. Tsvetnye Metally. 2020, no. 2, pp. 36—41. [In Russ]. DOI: 10.17580/tsm.2020.02.04.

3. Stennikov V. A., Golovshchikov V. O. Energy of the Irkutsk region: Trends, challenges and threats in modern conditions. Energy policy. 2022, no. 12 (178), pp. 56—71. [In Russ]. DOI: 10.46920/24095516.2022_12178.56.

4. Nemchinova N. V., Konovalov N. P., Konovalov P. N., Doshlov I. O. Reducing the environmental burden on the environment during aluminum production through the use of petroleum pitch. iPolytech Journal. 2023, no. 27(4), pp. 800—808. [In Russ]. DOI: 10.21285/1814-3520-2023-4-800-808.

5. Doshlov O. I., Chizhik K. I., Doshlov I. O., Podgorbunskaya T. A. Afanasyeva R. S. Modern resource-saving technology for obtaining anode mass in metallurgical production. Proceedings of Irkutsk State Technical University. 2018, vol. 22, no. 7 (138), pp. 181—192. [In Russ]. DOI: 10.21285/1814-3520-2018-7-181-192.

6. Glukhov V. S., Makarov A. B., Khasanova G. G. Waste from the aluminum industry: composition, areas of use. Research trajectory — human, nature, technology. 2022, no. 2 (2), pp. 38—52. [In Russ]. DOI: 10.56564/27825264_2022_2_38.

7. Kuz'min M. P., Kuz'mina M. Yu., Jia Q. R., Kuz'mina A. S., Burdonov A. E. The use of carboncontaining wastesof aluminum production in ferrous metallurgy. Izvestiya. Ferrous Metallurgy. 2020, vol. 63, no. 10, pp. 836—841. DOI: 10.17073/0368-0797-2020-10-836-841.

8. Zenkin E. Yu., Gavrilenko A. A., Nozhko S. I., Gavrilenko L. V. Technology of regeneration of gas cleaning solutions of PJSC Rusal Bratsk from sulfur compounds using natural cold. Tsvetnye Metally. 2020, no. 11, pp. 27—31. [In Russ]. DOI: 10.17580/tsm.2020.11.04.

9. Burdonov A. E., Zelinskaya E. V., Nemchinova N. V., Novikov Yu. V. Processing of alumina-containing waste for use in the production of primary aluminum. Tsvetnye Metally. 2022, no. 8, pp. 15—22. [In Russ]. DOI: 10.17580/tsm.2022.08.02.

10. Timkina E. V., Baranov A. N., Petrovskaya V. N., Ershov V. A. Thermodynamics of fluorine leaching from aluminum production waste. Proceedings of Irkutsk State Technical University. 2016, vol. 20, no. 12, pp. 190—200. [In Russ]. DOI: 10.21285/1814-3520-2016-12-182-192.

11. Kulikov B. P., Vasyunina N. V., Dubova I. V., Samoilo A. S., Balanev R. O., Kutovaya A. S. Production of Portland cement clinker using an additive based on synthetic fluorite and graphitized carbon. Ecology and Industry of Russia. 2023, vol. 27, no. 10, pp. 42—47. [In Russ]. DOI: 10.18412/18160395-2023-10-42-47.

12. Nemchinova N. V., Yakushevich P. A., Yakovleva A. A., Gavrilenko L. V. Experiment on the use of technogenic waste from the Bratsk Aluminum Plant as a reducing agent in iron smelting. Metallurgist. 2018, no. 2, pp. 56—60. [In Russ].

13. Burdonov A. E., Zelinskaya E. V., Gavrilenko L. V., Gavrilenko A. A. Study of the material composition of alumina-containing material of aluminum electrolyzers for use in primary aluminum technology. Tsvetnye Metally. 2018, no. 3, pp. 32—38. [In Russ]. DOI: 10.17580/tsm.2018.03.05.

14. Burdonov A. E., Barakhtenko V. V., Zelinskaya E. V., Gavrilenko L. V. Cleaning of alumina-containing sweepings by dry air classification methods. Izvestiya. Non-Ferrous Metallurgy. 2021, vol. 27, no. 3, pp. 73—84. [In Russ]. DOI: 10.17073/0021-3438-2021-3-73-84.

15. Burdonov A. E., Barakhtenko V. V., Prokhorov K. V., Gavrilenko A. A. Results of studies of working indices of disintegration of alumina-containing waste. Obogashchenie Rud. 2018, no. 4 (376), pp. 11—16. [In Russ]. DOI: 10.17580/or.2018.04.03.

16. Burdonov A. E., Barakhtenko V. V., Zelinskaya E. V., Gavrilenko L. V. Study of the contrast of alumina-containing sludge to assess the possibility of its enrichment by photometric separation. Obogashchenie Rud. 2021, no. 6, pp. 34—41. [In Russ]. DOI: 10.17580/or.2021.06.06.

17. Baranov A. N., Gulyaev A. V., Yanyushkin A. S. Development of technology for the production of anode paste from coal foam flotation tailings. Systems. Methods. Technologies. 2013, no. 2 (18), pp. 91—96. [In Russ].

18. Ivankov S. I., Troitsky A. V. Problems of processing and recycling of large-tonnage waste of the aluminum industry and ways to solve them (review). Nauchnye i tekhnicheskie aspekty okhrany okruzhayushchey sredy. 2020, no. 3, pp. 2—26. [In Russ].

19. Yushina T. I., Chanturia E. L., Dumov A. M., Myaskov A. V. Modern trends in the development of iron ore processing technologies. Gornyi Zhurnal. 2021, no. 11, pp. 75—83. [In Russ]. DOI: 10.17580/gzh.2021.11.10.

20. Tolkushev A. G., Gridasov I. N., Rudskaya L. V., Kostromina L. Increasing the complexity of raw material use in processing ore of complex material composition of the Mikhailovskoye deposit. Izvestiya Kurskogo gosudarstvennogo tekhnicheskogo universiteta. 2009, no. 1(26), pp. 30a—33. [In Russ].

21. Vasyunina N. V., Beloussov S. V., Dubova I. V., Morenko A. V., Druzhinin K. E. Extraction of silicon and iron oxides from alumina-containing sweepings of aluminum production. Izvestiya. NonFerrous Metallurgy. 2018, no. 2, pp. 4—12. [In Russ]. DOI: 10.17073/0021-3438-2018-2-4-12.

22. Vasyunina N. V., Dubova I. V., Beloussov S. V., Sharypov N. A. Recycling of sweepings of aluminum electrolysis production. Obogashchenie Rud. 2019, no. 2, pp. 39—44. [In Russ]. DOI: 10.17580/ or.2019.02.07.

23. Yanpeng Wu, Xiaoqi Peng, Nur Mohammad Correlation analysis of control parameters of flotation process. Journal on Internet of Things. 2019, vol. 1, no. 2, pp. 63—69. DOI: 10.32604/jiot.2019.06111.

24. M. Lu, Dong H. Xie, Wei H. Gui, Liang H. Wu, Chao Y. Chen, Chun H. Yang A cascaded recognition method for copper rougher flotation working conditions. Chemical Engineering Science. 2018, vol. 175, pp. 220—230. DOI: 10.1016/j.ces.2017.09.048.

25. Tang Z. J., Ling M., Yao H., Qian Z. X., Zhang X. Q. Robust image hashing via random gabor filtering and DWT. Computers, Materials & Continua. 2018, vol. 55, no. 2, pp. 331—344.

26. Wang X., Song C., Yang C., Xie Y. F. Process working condition recognition based on the fusion of morphological and pixel set features of froth for froth flotation. Minerals Engineering. 2018, vol. 128, pp. 17—26.

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.