Forms of transfer of microelements in river network and their distribution in bottom sediments in coal mining regions

Underground coal mining often produces acid water with high content of microelements. In closure of coal mines using flooding, after recovery of groundwater level, acid mine water can flow out on ground surface. Such water enters a river network and gets neutralized, and sediments of metal hydroxides settle and accumulate many microelements. The studies were carried out at the Kosva River, Western Ural, Russia, which intakes acid water from eight outlets in the Kizel Coal Basin, having sulfate ferruginous–calcium composition and high mineralization. The research objectives were calculation of manmade suspended matter size and spread from them chemical analysis of water, determination of transfer mechanisms of microelements in river water, and identification of distribution of microelements in the water–bottom sediment system and per chemical fractions of bottom sediments by ICP-MS analysis of water and bottom sediment extracts. Microelements mostly transfer in dissolved and colloidal forms. The highest content of microelements in bottom sediments is observed in the fraction of consolidated organic matter, oxides and sulfides and in the fraction of solid residual compound. With respect to the rate of mobility in the water–bottom sediment system, microelements range as follows: Mn > Co > Ni > Zn ≈ Mn > Li > Cu > Al ≈ Cr. The manmade sediments accumulated on river bed are the source of the secondary water pollution with microelements in the changing environment.

Keywords: coal basin, acid mine water, microelements, river systems, manmade bottom sediments, surface water pollution, environment, sorption.
For citation:

Maksimovich N. G., Khmurchik V. Т., Berezina О. А. Forms of transfer of microelements in river network and their distribution in bottom sediments in coal mining regions. MIAB. Mining Inf. Anal. Bull. 2022;(11):52-66. [In Russ]. DOI: 10.25018/0236_1493_2022_11_0_52.

Acknowledgements:

The studies were supported by the Perm Research and Education Center for Rational Subsoil Management, 2021.

Issue number: 11
Year: 2022
Page number: 52-66
ISBN: 0236-1493
UDK: 504.4.054
DOI: 10.25018/0236_1493_2022_11_0_52
Article receipt date: 07.07.2022
Date of review receipt: 10.08.2022
Date of the editorial board′s decision on the article′s publishing: 10.10.2022
About authors:

N.G. Maksimovich1, Cand. Sci. (Geol. Mineral.), Assistant Professor, Honored Ecologist of Russian Federation, Deputy Director for Scientific Work, Institute of Natural Science, e-mail: nmax@psu.ru, ORCID ID: 0000-0001-6220-2730,
V.T. Khmurchik1, Dr. Sci. (Geol. Mineral.), Leading Researcher, Institute of Natural Science, e-mail: khmurchik.vadim@mail.ru, ORCID ID: 0000-0001-7629-6168,
O.A. Berezina1, Cand. Sci. (Geogr.), Assistant Professor, e-mail: berezina.olga16@gmail.com, ORCID ID: 0000-0001-6491-0722,
1 Perm State National Research University, 614068, Perm, Russia.

 

For contacts:

O.A. Berezina, e-mail: berezina.olga16@gmail.com.

Bibliography:

1. Gavrishin A. I. Application of digital classification technology in the analysis of man-made environmental changes in the eastern Donbass. Bulletin of Higher Educational Institutions. North Caucasus region. Technical Sciences. 2020, no. 1, pp. 11—17. [In Russ]. DOI: 10.17213/15603644-2020-1-11-17.

2. Rybnikova L. S., Rybnikov P. A. Influence of environmental damage accumulated from mining activities on the state of the hydrosphere of the Middle Urals. Water Sector of Russia: Problems, Technologies, Management. 2013, no. 6, pp. 110—118. [In Russ].

3. Wright I. A., Paciuszkiewicz K., Belmer N. Increased water pollution after closure of Australia’s longest operating under-ground coal mine: A 13-month study of mine drainage, water chemistry and river ecology. Water Air Soil Pollut. 2018, vol. 229, article 55. DOI: 10.1007/ s11270-018-3718-0.

4. Fetisova N. F. Investigation of the forms of metal migration in rivers affected by mine waters of the Kizelovsky coal basin. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2021, no. 1, pp. 144—152. [In Russ]. DOI: 10.18799/24131830/2021/1/3007.

5. Abramov S. M., Tejada J., Grimm L., Schädler F., Bulaev A., Tomaszewski E. J., Byrne J. M., Straub D., Thorwarth H., Amils R., Kleindienst S., Kappler A. Role of biogenic Fe(III) minerals as a sink and carrier of heavy metals in the Rio Tinto, Spain. Science of the Total Environment. 2020, vol. 718, article 137294. DOI: 10.1128/aem.02290-21.

6. Chen M., Li F., Tao M., Hu L., Shi Y., Liu Y. Distribution and ecological risks of heavy metals in river sediments and overlying water in typical mining areas of China. Marine Pollution Bulletin. 2019, vol. 146, pp. 893—899. DOI: 10.1016/j.marpolbul.2019.07.029.

7. Yi L., Gao B., Liu H., Zhang Y., Du C., Li Y. Characteristics and assessment of toxic metal contamination in surface water and sediments near a uranium mining area. International Journal of Environmental Research and Public Health. 2020, vol. 17, no. 2, article 548. DOI: 10.3390/ ijerph17020548.

8. Maksimovich N. G., P'yankov S. V. Kizelovskiy ugol'nyy basseyn: ekologicheskie problemy i puti resheniya: monografiya [Kizel coal basin: environmental problems and solutions, monograph], Perm, PGNIU, 2018, 288 p.

9. Grande J. A., Santisteban M., Perez-Ostale E., Valente T., de la Torre M. L., Gomes P., Barrios-Parra F. Dilution versus pollution in watercourses affected by acid mine drainage. A graphic model for the Iberian Pyrite Belt (SW Spain). Mine Water and the Environment. 2018, vol. 37, pp. 211—216. DOI: 10.3390/ijerph17020548.

10. Zakrutkin V. E., Gibkov E. V., Reshetnyak O. S., Reshetnyak V. N. Bottom sediments as an indicator of primary and secondary pollution of river waters in the coal mining areas of Eastern Donbass. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya. 2020, vol. 84, no. 2, pp. 259—271. [In Russ].

11. Li H., Yang J., Ye B., Jiang D. Pollution characteristics and ecological risk assessment of 11 unheeded metals in sediments of the Chinese Xiangjiang River. Environmental Geochemistry and Health. 2019, vol. 41, no. 3, pp. 1459—1472. DOI: 10.1007/s10653-018-0230-9.

12. Pyankov S. V., Maximovich N. G., Khayrulina E. A., Berezina O. A., Shikhov A. N., Abdullin R. K. Monitoring acid mine drainage’s effects on surface water in the Kizel Coal Basin with Sentinel-2 satellite images. Mine Water and the Environment. 2021, vol. 40, no. 3, pp. 606—621. DOI: 10.1007/s10230-021-00761-7.

13. Geoekologicheskaya geoinformatsionnaya sistema Kizelovskogo ugol'nogo basseyna, available at: http://kub.maps.psu.ru.

14. Tessier A., Campbell P. G. C., Bisson M. Sequential extraction procedure for the speciation of particulate trace metals. Analitical Chemistry. 1979, vol. 51, pp. 844—851.

15. Hakansson K., Karllson S., Allard B. Effects of pH on the accumulation and redistribution of metals in a polluted stream bed sediment. Science of the Total Environment. 1989, vol. 87/88, pp. 43—57.

16. Munk L., Faure G., Pride D. E., Bigham J. M. Sorption of trace metals to an aluminum precipitate in a stream receiving acid rock-drainage; Snake River, Summit County, Colorado. Applied Geochemistry. 2002, vol. 17, no. 4, pp. 421—430. DOI: 10.1016/S0883-2927(01)00098-1.

17. Kimball B. A., Callender E., Axtmann E. V. Effects of colloids on metal transport in a river receiving acid mine drainage, upper Arkansas River, Colorado, USA. Applied Geochemistry. 1995, vol. 10, no. 3, pp. 285—306. DOI: 10.1016/0883-2927(95)00011-8.

18. Ji H., Li H., Zhang Y., Ding H., Gao Y., Xing Y. Distribution and risk assessment of heavy metals in overlying water, porewater, and sediments of Yongding River in a coal mine brownfield. Journal of Soils and Sediments. 2018, vol. 18, pр. 624—639. DOI: 10.1007/s11368-017-1833-y.

19. Torre B. M., Borrero-Santiago A. R., Fabbri E., Guerra R. Trace metal levels and toxicity in the Huelva Estuary (Spain). A case study with comparisons to historical levels from the past decades. Environmental Chemistry and Ecotoxicology. 2019, vol. 1, pр. 12—18. DOI: 10.1016/ j.enceco.2019.07.002.

20. Sojka M., Jaskuła J., Siepak M. Heavy metals in bottom sediments of reservoirs in the lowland area of Western Poland: Concentrations, distribution, sources and ecological risk. Water. 2018, vol. 11, no. 1, article 56. DOI: 10.3390/w11010056.

21. Miao X., Song M., Xu G., Hao Y., Zhang H. The accumulation and transformation of heavy metals in sediments of Liujiang River Basin in Southern China and their threatening on water security. International Journal of Environmental Research and Public Health. 2022, vol. 19, article 1619. DOI: 10.3390/ijerph19031619.

22. Semenkov I., Sharapova A., Lednev S., Yudina N., Karpachevskiy A., Klink G., Koroleva T. Geochemical partitioning of heavy metals and metalloids in the ecosystems of abandoned mine sites. A case study within the Moscow brown coal basin. Water. 2022, vol. 14, no. 1, article 113. DOI: 10.3390/w14010113.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.