Gas chemistry research at boundaries of crust blocks in the south of Moscow Region

The article describes the gas chemistry research carried out in a geodynamic zone detected by the geodynamic zoning in the south of the Moscow Region in 2002. The understudied impact of geodynamic zones on the health and environment actualizes studies into reflections of geodynamic zones (block joints) in the near-surface atmospheric gas fields. To that effect, in May 2022, the gas chemistry survey was carried out along the route 1.5 km long from Sotnikovo settlement northward across the trend of the geodynamic zone. It is supposed that emission of deep-earth gases to ground surface is more intense in geodynamically active zones which are the highly permeable areas in the earth crust. The experimental research used the micro geodynamic mapping procedure earlier developed and approved in the course of hydrogeological and geological engineering. The interpretation of the results allows drawing a conclusion that that the methods of geodynamic zoning and micro geodynamic mapping can effectively complement each other in the environmental and geodynamic safety analyses and in studying deep-earth gas migration to ground surface. Moreover, it is possible to combine these methods in handling of the environmental and geodynamic safety issues in different-purpose areas.

Keywords: gas migration, geodynamic zoning, micro geodynamic mapping, geodynamic zone, gas chemistry survey, gas field, ecological hazard, geodynamic hazard, earth crust blocks, territorial zoning.
For citation:

Batugin A. S., Hotchenkov E. V., Divakov D. V., Emelyanov S. I., Shermatova S. S. Gas chemistry research at boundaries of crust blocks in the south of Moscow Region. MIAB. Mining Inf. Anal. Bull. 2022;(11):163-172. [In Russ]. DOI: 10.25018/0236_1493_2022_11_0_163.


The study was supported by the Russian Science Foundation, Project No. 22-27-00728.

Issue number: 11
Year: 2022
Page number: 163-172
ISBN: 0236-1493
UDK: 502/504; 622.831.33; 551.248.2
DOI: 10.25018/0236_1493_2022_11_0_163
Article receipt date: 07.07.2022
Date of review receipt: 09.09.2022
Date of the editorial board′s decision on the article′s publishing: 10.10.2022
About authors:

A.S. Batugin1, Dr. Sci. (Eng.), Professor, e-mail:,
E.V. Hotchenkov, Cand. Sci. (Eng.), e-mail:, Head of Scientific and Educational Department, V.I. Vernadsky State Geological Museum of Russian Academy of Sciences, Moscow, Russia,
D.V. Divakov, Cand. Sci. (Phys. Mathem.), Assistant Professor, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia,
S.I. Emelianov, Engineer, e-mail:, ООО «Katari Center for Integrated Subsoil Research», Moscow, Russia,
S.S. Shermatova1, Graduate Student, e-mail:,
1 Mining Institute, National University of Science and Technology «MISiS», 119049, Moscow, Russia.


For contacts:

A.S. Batugin, e-mail:


1. Vasilenko T. A., Voloshina N. I., Kolchik I. E., Molodetsky A. V., Podrukhin A. А. Research of methane maintenance in soil AIR in the area of geological faults output under the sediments. MIAB. Mining Inf. Anal. Bull. 2016, no. 7, pp. 159—166. [In Russ].

2. Gee D., Bateson L., Sowter A., Grebby S., Novellino A., Cigna F., Marsh S., Banton C., Wyatt L. Ground motion in areas of abandoned mining: Application of the intermittent SBAS (ISBAS) to the Northumberland and Durham Coalfield, UK. Geosciences. 2017, vol. 7, no. 3. DOI: 10.3390/geosciences7030085.

3. Giustini F., Ruggiero L., Sciarra A., Beaubien S. E., Graziani S., Galli G., Ciotoli G. Radon hazard in central Italy: Comparison among areas with different geogenic radon potential. International Journal of Environmental Research and Public Health. 2022, vol. 19, no. 2. DOI: 10.3390/ ijerph19020666.

4. Nikiforov D. V., Mezhova L. A., Kulnev V. V., Lugovskoi A. M., Nikanov A. N., Kizeev A. N., Repina E. M. Public health in radon-affected territories. Ekologiya cheloveka (Human Ecology). 2019, no. 1, pp. 40—50. [In Russ].

5. Kasatkin S. A., Obzhirov A. I. Fluid-controlling significance of the nosappu fracture zone and conditions for the formation of methane fluxes and gas hydrates (sea of Okhotsk region). Russian Journal of Pacific Geology. 2018, vol. 12, no. 1, pp. 57—62. DOI: 10.1134/ S1819714018010025.

6. Lázaro-Mancilla O., Garduño-Monroy V. H., Mendoza-Ponce A., Figueroa-Soto A., Vázquez-Rosas R., Ramírez-Tapia G. M., Cortés-Silva A. Radon (222Rn) gas concentrations in soil from the urban area of morelia, michoacán, mexico and their relation with potentially seismic faults and with faults associated to subsidence-creep processes. Revista Mexicana De Ciencias Geologicas. 2020, vol. 12, no. 12, pp. 157—177. DOI: 10.22201/CGEO.20072902E.2020.2.1547.

7. Mojzeš A., Marko F., Porubčanová B., Bartošová A. Radon measurements in an area of tectonic zone. A case study in central slovakia. Journal of Environmental Radioactivity. 2017, vol. 166, pp. 278—288. DOI: 10.1016/j.jenvrad.2016.08.012.

8. Batugina I. M., Petukhov I. M. Geodinamika nedr [Geodynamics of the subsurface], Moscow, Nedra, 1996, 232 p.

9. Alekseev V. K., Batugin A. S., Batugina I. M., Garan'kin N. V., Kalinin A. M., Petukhov I. M., Chelpan P. I. Geodinamicheskoe rayonirovanie territorii Moskovskoy oblasti [Geodynamic zoning of the territory of the Moscow region], Stupino: SMT, 2003, 126 p.

10. Divakov V. I. The method of microgeodynamic studies — a new method in geology. Vestnik Rossiyskogo Universiteta druzhby narodov. Seriya Geol. i razv. pol. iskop. 1996, pp. 71—79. [In Russ].

11. Cvetković M., Kapuralić J., Pejić M., Močilac I. K., Rukavina D., Smirčić D., Kamenski A., Matos B., Špelić M. Soil gas measurements of radon, CO2 and hydrocarbon concentrations as indicators of subsurface hydrocarbon accumulation and hydrocarbon seepage. Sustainability. 2021, vol. 13, no. 7, article 3840. DOI: 10.3390/su13073840.

12. Lobatskaya R. M. Strukturnaya zonal'nost' razlomov [Structural zoning of faults] Novosibirsk, Nedra, 1987, 128 p.

13. Chen Z., Li Y., Liu Z., Wang J., Zhou X., Du J. Radon emission from soil gases in the active fault zones in the capital of china and its environmental effects. Scientific Reports. 2018, vol. 8, no. 1. DOI: 10.1038/s41598-018-35262-1.

14. Batugin A. S., Kobylkin A. S., Musina V. R. Investigation of the influence of the geodynamic position of coal-bearing dumps on their endogenous fire hazard. Journal of Mining Institute. 2021, vol. 250, no. 4, pp. 526—533. [In Russ]. DOI: 10.31897/PMI.2021.4.5.

15. Malashkina V. A. Trends toward reduction of mine methane emission in atmosphere. MIAB. Mining Inf. Anal. Bull. 2021, no. 10-1, pp. 137—145. [In Russ]. DOI: 10.25018/0236_1 493_2021_101_0_137.

16. Sechman H., Kotarba M. J., Kędzior S., Dzieniewicz M., Romanowski T., Twaróg A. Distribution of methane and carbon dioxide concentrations in the near-surface zone, genetic implications, and evaluation of gas flux around abandoned shafts in the jastrzębie-pszczyna area (southern part of the upper silesian coal basin, Poland). International Journal of Coal Geology. 2019, no. 204, pp. 51—69. DOI: 10.1016/j.coal.2019.02.001.

17. Tatarinov V. N., Morozov V. N., Kamnev E. N., Manevich A. I. Geodynamic aspects of high-level radioactive waste disposal. A case-study of Nizhnekansky massif. Gornyi Zhurnal. 2021, no. 3, pp. 108—112. [In Russ]. DOI: 10.17580/gzh.2021.03.05 6.

18. Slastunov S. V., Mazanik E. V., Kolikov K. S. Improvement of degassing efficiency at coal seams high productive development. Occupational Safety in Industry. 2019, no. 1, pp. 71—

76. [In Russ]. DOI: 10.24000/0409-2961-2019-1-71-76.

19. Balovtsev S. V., Skopintseva O. V., Kolikov K. S. Aerological risk management in designing, operation, closure and temporary shutdown of coal mines. MIAB. Mining Inf. Anal. Bull. 2020, no. 6, pp. 85—94. [In Russ]. DOI: 10.25018/0236-1493-2020-6-0-85-94.

20. Kulikova A. A., Ovchinnikova T. I. On the issue of reducing geoecological risks at mining enterprises. MIAB. Mining Inf. Anal. Bull. 2021, no. 2-1, pp. 251—262. [In Russ]. DOI: 10.25018/0236-1493-2021-21-0-251-262.

21. Chmykhalova S. V. Systematic approach to risk assessment, contributing to the prevention of losses and increasing the safety of mining production. MIAB. Mining Inf. Anal. Bull. 2020, no. 6-1, pp. 146—153. [In Russ]. DOI 10.25018/0236-1493-2020-61-0-146-153.

22. Kobylkin S. S., Khubieva V. M. Local natural ventilation registration while ensuring aerological safety at the mining enterprises. Occupational Safety in Industry. 2021, no. 1, pp. 60—65. [In Russ]. DOI: 10.24000/0409-2961-2021-1-60-65.

23. Rasskazov I. Yu., Fedotova Yu. V., Sydlyar A. V., Potapchuk M. I. Analysis of induced seismic events in rockburst-hazardous Nikolaevsk deposit. MIAB. Mining Inf. Anal. Bull. 2020, no. 11, pp. 46—56. [In Russ]. DOI: 10.25018/0236-1493-2020-11-0-46-56.

24. Qiao Jianyong, Wang Zhiqiang, Zhao Jingli The evolution of thick coal seams mining methods in China. MIAB. Mining Inf. Anal. Bull. 2020, no. 8, pp. 105—117. [In Russ]. DOI: 10.25018/0236-1493-2020-8-0-105-117.

25. Kozyrev A. A., Zhukova S. A., Zhuravleva O. G., Onuprienko V. S. Induced seismicity of rock mass: Development of instrumental and methodological support to control seismicity at the khibiny apatite-nepheline deposits. Gornyi Zhurnal. 2020, no. 9, pp. 19—26. [In Russ]. DOI: 10.17580/gzh.2020.09.02.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.