Geomechanical assessment of safe technologies for underground mining beneath open pit mines

In many mineral mining regions, against the background of persistently elevating labor and money input, there is a trend of complication of mining conditions and depletion of ore reserves at shallow depths and in unfavorable geological conditions. Specific emphasis is laid on the geomechanics and geodynamics in the earth crust areas susceptible to dynamic events induced by confining pressure, which greatly affect mining safety and economic performance. The cost reduction and productivity boosting in ore mining requires adjustment of accessing and extraction flow charts. In this regard, at gold-bearing deposits Pioner and Malomyr which are intended for further operation with transition to underground mining using various roomand-pillar systems proposed, the integrated stress–strain behavior assessment was implemented in the mine and adjacent rock mass with identification of increased stress concentrations zones toward improved geodynamic safety of mining. The studies show that at the great depth of Quartzite Site, given the ore body thickness up to 4.5 m, the use of the room-and-pillar mining system can result in failure of the edge area of rock mass after extraction of 50% of ore reserves from a sublevel stoping block, while in Andreevskaya and SV-Bakhmut Sites at a shallower depth, all mine structures preserve stability at all stages of mining.

Keywords: gold-bearing ore deposit, rock mass, geodynamics, open pit mining, mining system, enclosing rock mass, stability, geomechanical safety.
For citation:

Potapchuk M. I., Rasskazov I. Yu., Sidlyar A. V., Lomov M. A., Rasskazov M. I. Geomechanical assessment of safe technologies for underground mining beneath open pit mines. MIAB. Mining Inf. Anal. Bull. 2022;(1):84-96. [In Russ]. DOI: 10.25018/0236_1493_ 2022_1_0_84.

Acknowledgements:

The study was assisted by the Shared-Use Center for Scientific Data Processing and Storage, Far East Branch, Russian Academy of Sciences, and supported by the Ministry of Science and Education of Russia, Agreement No. 075-15-2021-663.

Issue number: 1
Year: 2022
Page number: 84-96
ISBN: 0236-1493
UDK: 622.831
DOI: 10.25018/0236_1493_2022_1_0_84
Article receipt date: 01.04.2021
Date of review receipt: 21.10.2021
Date of the editorial board′s decision on the article′s publishing: 10.12.2021
About authors:

M.I. Potapchuk1, Cand. Sci. (Eng.), Leading Researcher, e-mail: potapchuk-igd@mail.ru,
I.Yu. Rasskazov, Dr. Sci. (Eng.), Corresponding Member of Russian Academy of Sciences, Acting Director, Khabarovsk Federal Research Center of Far Eastern branch of Russian Academy of Sciences, 680000, Khabarovsk, Russia, e-mail: adm@igd.khv.ru,
A.V. Sidlyar1, Researcher, e-mail: sidlyar.alex@gmail.com,
M.A. Lomov1, Junior Researcher, e-mail: 9241515400@mail.ru,
M.I. Rasskazov1, Researcher, e-mail: rasm.max@mail.ru,
1 Mining Institute, Far Eastern Branch of Russian Academy of Sciences, 680000, Khabarovsk, Russia.

For contacts:

M.I. Potapchuk, e-mail: potapchuk-igd@mail.ru.

Bibliography:

1. Sakantsev G. G. Resource-saving technologies in the development of ore deposits using the developed space. MIAB. Mining Inf. Anal. Bull. 2015, no. 2, pp. 29–37. [In Russ].

2. Golik V. I. Podzemnaya razrabotka mestorozhdeniy [Underground development of deposits], Moscow, 2014.

3. Kozhaev Zh. T., Sarybaev O. A., Baigurin Zh. D., Tusupova B. Kh. Analysis of the state of the mountain massif during combined mining of a gold deposit. Izvestiya nauchno-tekhnicheskogo obshchestva «KAKhAK». 2011, no. 3(33), pp. 76—78. [In Russ].

4. Rasskazov I. Yu., Potapchuk М. I., Kursakin G. A., Bolotin Yu. I., Sidlyar А. V., Rasskazov М. I. Prognostic assessment of rock massif burs — hazard during the deep horizon mining of Nikolaevskoe deposit. MIAB. Mining Inf. Anal. Bull. 2012, no. 4, pp. 96—102. [In Russ].

5. Semenova I. E., Avetisyan I. M. Estimation of open-pit / underground mining cross-effect in complicated geomechanical conditions. Gornyi Zhurnal. 2021, no. 1, pp. 58—63. [In Russ]. DOI: 10.17580/gzh.2021.01.10.

6. Kaizong Xia, Congxin Chen, Hua Fu, Yucong Pan, Yangyang Deng Mining-induced ground deformation in tectonic stress metal mines. A case study. Engineering Geology. 2016, vol. 210, pp. 212—230.

7. Flores G., Catalan A. A transition from a large open pit into a novel «macroblock variant» block caving geometry at Chuquicamata mine, Codelco Chile. Journal of Bock Mechanics and Geotechnical Engineering. 2019, vol. 11, no. 3, pp. 549—561.

8. Mazhitov A. M., Korneev S. A., Bondar E. A., Sharonova A. A. Stress-strain analysis of rock mass under mining In anthropogenically complicated conditions. Aktualnye problemy gornogo dela. 2017, no. 2(4), pp. 119—26. [In Russ].

9. Klovanich S. F. Metod konechnykh elementov v nelineynykh zadachakh inzhenernoy mekhaniki [Finite element method in nonlinear problems of engineering mechanics], Zaporozh'e, 2009, 400 p.

10. Zoteev O. V. Modeling of the stress-strain state of the rock mass by numerical methods. Izvestiya vysshikh uchebnykh zavedenii. Gornyi zhurnal. 2003, no. 5, pp. 108—115. [In Russ].

11. Lisjak A., Mahabadi O. K., He L. Tatone B., Kaifosh P., Haque S. A., Grasselli G. Acceleration of a 2D/3D finite-discrete element code for geomechanical simulations using General Purpose GPU computing. Computers and Geotechnics. 2018, vol. 100, pp. 84—96.

12. Rasskazov I. Yu., Potapchuk М. I., Osadchiy S. P., Potapchuk G. M. Geomechanical estimation of applied technologies of shock vulnerable deposits development of GMK «Dalpolimetal» Public Corporation. MIAB. Mining Inf. Anal. Bull. 2010, no. 7, pp. 137—145. [In Russ].

13. Saksin B. G., Rasskazov I. Yu. Shevchenko B. F. Principles of a comprehensive study of the modern stress-strain state of the upper levels of the Earth's crust of the Amur lithospheric plate. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2015, no. 2, pp. 53—62. [In Russ].

14. Levi K. G., Sherman S. I., San'kov V. A., Lunina O. V., Lukhnev A. V. Karta sovremennoy geodinamiki Azii. Masshtab 1:5 000 000 [Map of modern geodynamics of Asia. — Scale 1:5 000 000], Irkutsk: IZK SO RAN, 2007.

15. Kaiser J. Erkenntnisse und Folgerungen aus der Messung von Gerauschen bei Zugbeanspruchimg von metallischen Werkstoffen. Archiv fur das Eisenhuttenwesen. 1953, vol. 24, no. 1/2, pp. 43—45.

16. Yoshikawa S., Mogi K. A new method for estimation of the crustal stress from cored rock samples: laboratory study in the case of uniaxial compression. Tectonophysics. 1981, vol. 74, no. 3/4, pp. 323—339.

17. Yamshchikov V. S., Shkuratnik V. L., Lykov K. G. Measurement of stresses in the rock mass on the basis of the emission of the memory effects. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 1990, no. 2, pp. 23—28. [In Russ].

18. Kologrivko A. A. Podzemnye gornye raboty: uchebnoe posobie [Underground mining: Educational aid], Minsk, BNTU, 2006, 94 p.

19. Makarov A. B., Rasskazov I. Yu., Saksin B. G., Livinskiy I. S., Potapchuk M. I.Geomechanical substantiation of the parameters of the chamber system of development during the transition to the underground method of ore extraction. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2016, no. 3, pp. 27—38. [In Russ].

20. Freydin A. M., Neverov S. A., Neverov A. A., Filippov P. A. Stability of mining workings in systems of sub-storey collapse. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2008, no. 1, pp. 90—100. [In Russ].

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.