Ground-penetrating radar method to study thawing of frozen rock at the laboratory scale

Efficient mining in the permafrost zone needs taking into account the initial geocryological situation and its possible change. The changes can be caused by various cryogenic processes connected with thawing of permafrost rocks under the influence of natural and induced factors. This article discusses abilities of the ground-radar penetrating method in monitoring of permafrost rocks. The tests of the ground-radar penetrating method in investigation of frozen sand with inclusion of formation ice at the laboratory scale allowed finding the mechanisms of change in the kinetic and spectral characteristics of signals in the period of thawing. The comparison of radarograms recorded in probing of different-degree frozen rocks shows that deceleration of signal propagation during transition of rocks from frozen condition to thawing points at the start of thawing in frozen sand with wetness above 3%. It is found that the features of the spectrum envelope of signals reflected from the boundary of the ground ice layer are related with the decreasing thickness of the ice layer during thawing. The conclusion is drawn on the considerable potential of the ground-penetrating radar method in monitoring and prediction of changes in geocryology in areas under mining.

Keywords: frozen rocks, ice, thawing, cryogenic processes, ground-penetrating radar, radar signal velocity, signal spectrum.
For citation:

Fedorova L. L., Fedorov M. P., Kulyandin G. A., Savvin D. V. Ground-penetrating radar method to study thawing of frozen rock at the laboratory scale. MIAB. Mining Inf. Anal. Bull. 2021;(5):99-111. [In Russ]. DOI: 10.25018/0236_1493_2021_5_0_99.

Acknowledgements:

The study was supported by the Russian Foundation for Basic Research, Project No. 18-45-140061 r_a.

Issue number: 5
Year: 2021
Page number: 99-111
ISBN: 0236-1493
UDK: 551.345: 622.02: 621.396.96: 550.8
DOI: 10.25018/0236_1493_2021_5_0_99
Article receipt date: 08.06.2020
Date of review receipt: 22.06.2020
Date of the editorial board′s decision on the article′s publishing: 10.04.2021
About authors:

L.L. Fedorova1, Cand. Sci. (Eng.), Assistant Professor, Leading Researcher, e-mail: lar-fed-90@rambler.ru,
M.P. Fedorov1, Researcher, e-mail: mpfedoroff@gmail.com,
G.A. Kulyandin1, Researcher, e-mail: kgavrilu@yandex.ru,
D.V. Savvin1, Cand. Sci. (Eng.), Senior Researcher, e-mail: savvin.denis@inbox.ru,
1 Chersky Mining Institute of the North, Siberian Branch, Russian Academy of Sciences, 677000, Yakutsk, Republic of Sakha (Yakutia), Russia.

 

For contacts:

L.L. Fedorova, e-mail: lar-fed-90@rambler.ru.

Bibliography:

1. Nikolaev S. P., Zarovnyaev B. N., Fedorova L. L., Kulyandin G. A. Ground-penetrating radar surveys towards drilling and blasting improvement in permafrost. Gornyi Zhurnal. 2018, no 12, pp. 9—13. [In Russ]. DOI: 10.17580/gzh.2018.12.02.

2. Galkin A. F., Kurta I. V. Effect of temperature on thaw depth in frozen rocks. MIAB. Mining Inf. Anal. Bull. 2020, no 2, pp. 82—91. [In Russ]. DOI: 10.25018/0236-1493-2020-2-0-82-91.

3. Tkach S. M., Kurilko A. S., Romanova E. K. Effect of thermophysical research to cryolitezone deep opencast effectiveness and safety exploitation providing. MIAB. Mining Inf. Anal. Bull. 2015, no S56, pp. 80—85. [In Russ].

4. Goncharov Yu. M. Osnovaniya i fundamenty na vechnomerzlykh gruntakh [Bases and foundations on permafrost grounds], Yakutsk, IMZ SO RAN, 2016, 578 p.

5. Panishev S. V., Kaimonov M. V. Technical approach to prediction of dragline productiveness in blasted rock handling at open pit mines in permafrost zone. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2017, no 4, pp. 98—104. [In Russ].

6. Izakson V. Yu., Petrov E. E., Kovlekov I. I. Prognoz termomekhanicheskogo sostoyaniya mnogoletnemerzlogo massiva [Forecast of the thermomechanical state of the permafrost massif], Yakutsk, YaNTS SO AN SSSR, 1989, 108 p.

7. Kurilko A. S., Ermakov S. A., Khokholov Yu. A., Kaymonov M. V., Burakov A. M. Modelirovanie teplovykh protsessov v gornom massive pri otkrytoy razrabotke rossypey kriolitozony [Modeling of thermal processes in a rock massif during mining placers of the cryolithozone], Novosibirsk, Geo, 2011, 139 p.

8. Fedorova L. L., Kulyandin G. A., Savvin D. V. Geocryological analysis of rocks to predict adverse freeze-and-thaw effects. Journal of Mining Science. 2019, vol. 55, no. 6, pp. 1023—1031.

9. Turenko S. K., Druzhinina K. V. On systemic approach to increasing the effectiveness of researches of cryolithozone objects by geophysical methods. Izvestiya vysshikh uchebnykh zavedenii. Neft' i gaz. 2018, no 2, pp. 27—31. [In Russ].

10. Efremov V. N., Drozdov A. V. Changes of a geocryologic condition of earthfill dams in Western Yakutia and optimization of monitoring by a complex of geophysical electroprospecting methods. Nauka i obrazovanie. 2016, no 3(83), pp. 36—42. [In Russ].

11. Velikin S. A., Marchenko U. L., Bazhin K. I. Geophysical research during the study of engineering and geocryological state of host rocks in the eastern mine «Nyurba» (Western Yakutia). Bulletin of Kamchatka Regional Association «Educational-Scientific Center». Earth Sciences. 2015, no 3, iss. 27, pp. 35—46. [In Russ].

12. Briggs M. A., Seth C., Jay N., Walvoord M. A., Ntarlagiannis D., Day-Lewis F., Lane J. W. Surface geophysical methods for characterising frozen. Ground in transitional permafrost landscapes. 2017, vol. 28, no. 1, pp. 52—65.

13. Xinglin Lu, Ao Song, Rongyi Qian, Lanbo Liu Characterization of subsurface structure in different landforms based on GPR profiles along the Qinghai-Tibet Highway on permafrost region. GPR 2018: 17th International Conference on Ground Penetrating Radar. Rapperswil, Switzerland, 2018, pp. 335—339.

14. Harry M. J. Ground penetrating radar: theory and applications, Elsevier, 2009. 524 p.

15. Andrianov S. V. GPR monitoring of space between lining and rock in underground mines. MIAB. Mining Inf. Anal. Bull. 2019, no 5, pp. 124—132. [In Russ]. DOI: 10.25018/0236-14932019-05-0-124-132.

16. Hinkel K. M., Doolittle J. A., Bockheim J. G., Nelson F. E., Paetzold R., Kimble J. M., Travis R. Detection of subsurface permafrost features with ground-penetrating radar, Barrow, Alaska. Permafrost and Periglacial Processes. 2001, no. 12, pp. 179—190.

17. Noskevich V. V., Kuzbozhev A. S. GPR investigations of soils in the permafrost zone of the gas pipeline Вovanenkovo—Ukhta. Geophysical research. 2017, vol. 18, no. 3, pp. 17—26.

18. Funk C. W., van den Berghe M. Mapping complex geology with GPR in a Canadian Potash Mine. GPR 2018: 17th International Conference on Ground Penetrating Radar. Rapperswil, Switzerland, 2018, pp. 417—421.

19. Omel'yanenko A. V., Fedorova L. L. Georadiolokatsionnye issledovaniya mnogoletnemerzlykh porod [Ground penetrating radar survey of permafrost rocks: monograph], Yakutsk, YaNTS SO RAN, 2006, 136 p.

20. Ermakov A. P., Starovoytov A. V. Application of ground penetration radar method in ingineering and geological research in order to estimate geocryological condition. Moscow University Bulletin. Series 4. Geology. 2010, no 6, pp. 91—96.

21. Wollschläger U., Gerhards H., Yu Q., Roth K. Multi-channel ground-penetrating radar to explore spatial variations in thaw depth and moisture content in the active layer of a permafrost site. The Cryosphere. 2010, no. 4, pp. 269—283.

22. Sudakova M. S., Sadurtdinov M. R., Malkova G. V., Skvortsov A. G., Tsarev A. M. Application of ground penetrating radar in permafrost investigations. Kriosfera Zemli. 2017, vol. XXI, no 3, pp. 69—82. [In Russ].

23. Bricheva S. S., Krylov S. S. Ground-penetrating radar investigations of near-surface permafrost soils on the Gydan Peninsula. Inzhenernye izyskaniya. 2014, no 9-10, pp. 38—44. [In Russ].

24. Cao B., Gruber S., Zhang T., Li L., Peng X., Wang K., Zheng L., Shao W., Guo H. Spatial variability of active layer thickness detected by ground-penetrating radar in the Qilian Mountains, Western China. Journal of Geophysical Research Earth Surface. 2017, vol. 122, no. 3, pp. 574—591.

25. Gusmeroli A., Lin L., Schaefer K., Zhang T., Schaefer T., Grosse G. Active layer stratigraphy and organic layer thickness at a thermokarst site in Arctic Alaska identified using ground penetrating radar. Arctic, Antarctic and Alpine Research. 2015, vol. 47, no. 2, pp. 195—202.

26. Grunty. Metody laboratornogo opredeleniya fizicheskikh kharakteristik [Soils. Methods of laboratory determination of physical characteristics], Moscow, Standartinform, 2016, 30 p. [In Russ].

27. Fedorova L. L., Savvin D. V., Sokolov K. O., Kulyandin G. A. Investigation of GPR signals parameters changes during defrosting process of frozen dispersed rocks of different humidity. Nauka i obrazovanie. 2016, no 3(83), pp. 42—46. [In Russ].

28. Finkel'shteyn M. I., Kutev V. A., Zolotarev V. P. Primenenie radiolokatsionnogo podpoverkhnostnogo zondirovaniya v inzhenernoy geologii [Applications of subsurface radar in geology], Moscow, Nedra, 1986, 128 p.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.