Hybrid sorbents — meliorants for recultivation of arsenic-contaminated soils

Arsenic is one of the chemical elements present in low concentrations in almost all environmental components. At the same time, arsenic is not among the trace elements necessary for the normal functioning of living organisms. A real threat to ecosystems is the content of arsenic in soils in a mobile form. The presence of arsenic in a mobile form can lead to an increase in the area of contamination, primarily due to the high probability of penetration into groundwater. This paper presents the results of model testing of hybrid sorbents — meliorants in relation to the immobilization of the water-soluble form of arsenic are presented. The following series of studied sorbents according to the efficiency of arsenic adsorption was formed: peat/diatomite/vermiculite with different amounts of hydrated iron(III) oxide > peat/ diatomite/vermiculite > peat/diatomite/water treatment sludge > water treatment sludge. It has been established that the individual use of water treatment sludge as a sorbent or in a mixture with other substances provides a 50% or more reduction in the arsenic content in the initial solution. The remediation potential of water treatment sludge can be enhanced by combined use with such substances of natural origin as peat and diatomite.

Keywords: arsenic, sorbents, ameliorants, reclamation, peat, diatomite, vermiculite, water treatment sludge.
For citation:

Apakashev R. A., Lebzin M. S., Yurak V. V., Malyshev A. N. Hybrid sorbents — meliorants for recultivation of arsenic-contaminated soils. MIAB. Mining Inf. Anal. Bull. 2022;(111):18—28. [In Russ]. DOI: 10.25018/0236_1493_2022_111_0_18.


This work has been supported by the grants the Russian Science Foundation, RSF № 22−24−20102, https://rscf.ru/project/22−24−20102/ with the financial support of the Government of the Sverdlovsk region.

Issue number: 11
Year: 2022
Page number: 18-28
ISBN: 0236-1493
UDK: 626.87
DOI: 10.25018/0236_1493_2022_111_0_18
Article receipt date: 16.06.2022
Date of review receipt: 14.09.2022
Date of the editorial board′s decision on the article′s publishing: 10.10.2022
About authors:

Apakashev R. A.1, Dr. Sci. (Chem.), Professor, e-mail: Apakashev.R@m.ursmu.ru; ORCID: 0000-0002-9006-3667;
Lebzin M. S.1, Junior researcher of the research laboratory, e-mail: az_ma@mail.ru, ORCID: 0000-0001-5959-135X;
Yurak V. V.1, Cand. Sci. (Econ.), Associate professor, e-mail: vera_yurak@mail.ru; ORCID: 0000-0003-1529-3865;
Malyshev A. N.1, Laboratory assistant-researcher, e-mail: malyshev.k1b@gmail.com, ORCID: 0000-0002-3104-1687;
1 Ural State Mining University, Russia, Yekaterinburg, str. Kuibyshev, 30, 620144.


For contacts:

Apakashev R. A., e-mail: Apakashev.R@m.ursmu.ru.


1. Barbosa F. Toxicology of metals and metalloids: Promising issues for future studies in environmental health and toxicology. Journal of Toxicology and Environmental Health, Part A. 2017. Vol. 80, no. 3. PP. 137−144. DOI: 10.1080/15287394.2016.1259475.

2. Medvedev I. F., Derevyagin S. S. Heavy metals in ecosystems. Saratov: “Foreshortening”. 2017. P. 178. [In Russ].

3. Aponte H., Meli P., Butler B., Paolini J., Matus F., Merino C., Cornejo P., Kuzyakov Y. Meta-analysis of heavy metal effects on soil enzyme activities. Science of The Total Environment. 2020. Volume 737. P. 139744. DOI: 10.1016/j.scitotenv.2020.139744.

4. Rehman K., Fatima F., Waheed I., Akash M. S.H. Prevalence of exposure of heavy metals and their impact on health consequences. Journal of Cellular Biochemistry. 2018. Vol. 119, no. 1. pр. 157−184. DOI: 10.1002/jcb.26234.

5. Rosen E. M., Muñoz M. I., McElrath T., Cantonwine D. E., Ferguson K. K. Environmental contaminants and preeclampsia: A systematic literature review. Journal of Toxicology and Environmental Health, Part B. 2018. Vol. 21, no. 5. pp. 291−319. DOI: 10.1080/10937404.2018.1554515.

6. Gupta P. Metals and micronutrients. Illustrated Toxicology. Elsevier, 2018. pp. 195– 223. DOI: 10.1016/B978−0-12−813213−5.00006−7.

7. Antoninova N. Yu., Usmanov A. I., Sobenin A. V., Gorbunov A. A. Effect of peat– diatomite ameliorant on grass cover persistency in disturbed land reclamation. MIAB. Mining Inf. Anal. Bull. 2022;(5):131−141. [In Russ]. DOI: 10.25018/0236_1493_2022_5_0_131

8. Dmitrieva E. D., Siundiukova K. V., Leontieva M. M., Glebov N. N. The effect of pH on the binding of heavy metal ions with humic substances and hymatomelanic acids of peats. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2017, vol. 159, no. 4, pp. 575–588. [In Russ].

9. Yun H.-S., Jang M., Shin W.-S., Choi J. Remediation of arsenic-contaminated soils via waste-reclaimed treatment agents: Batch and field studies. Minerals Engineering. 2018. Vol.127. pp. 90−97. DOI: 10.1016/j.mineng.2018.07.015.

10. Kovacova Z., Demcak S., Balintova M., Pla C., Zinicovscaia I. Influence of Wooden Sawdust Treatments on Cu(II) and Zn(II) Removal from Water. Materials. 2020. v. 13. P. 3575. DOI: 10.3390/ma13163575.

11. Osipov A. I. Lime containing waste and their use for chemical source melioration. Health is the basis of human potential: problems and ways to solve them. 2018. V. 13. no. 2. pp. 981–988. [In Russ].

12. Antoninova N.Yu., Shubina L. A., Shepel K. V., Sobenin A. V., Usmanov A. I. Assessment of the possibility of using industrial waste in the development of measures for the immobilization of heavy metals. MIAB. Mining Inf. Anal. Bull. 2022;(5–1):46–55. (In Russ). DOI: 10.25018/0236_1493_2022_51_0_46.

13. Apakashev R. A., Guman O. M., Valiev N. G. Reclamation of disturbed lands by means of technogenic water treatment sludge. Sustainable Development of Mountain Territories. 2020. V. 12, no. 2(44). P. 229−236. [In Russ]. DOI: 10.21177/1998-4502-2020-12−2-229−236.

14. Turner T., Wheeler R., Stone A., Oliver I. Potential Alternative Reuse Pathways for Water Treatment Residuals: Remaining Barriers and Questions a Review. Water, Air, and Soil Pollution. 2019. Vol. 230. P. 227. DOI: 10.1007/s11270-019-4272-0.

15. Golik V. I., Razorenov Yu.I., Karginov K. G. Mining industry the basis for sustainable development of North Ossetia.. Sustainable Development of Mountain Territories. 2017. V.9, no. 2(32). pp. 163−172. [In Russ]. DOI: 10.21177/1998-4502-2017-9-2−163−171.

16. Kamalov K. O., Akhmarov F. I., Dubovtsev D.Yu. Investigation of methods of arsenic removal from technological solutions of copper smelting production. SOCIETY. SCIENCE. INNOVATIONS (NPC-2021). 2021. pp. 173−179. [In Russ].

17. Ahmad A., Rutten S., de Waal L., Vollaard P., van Genuchten C., Bruning H., Cornelissen E., van der Wal A. Mechanisms of arsenate removal and membrane fouling in ferric based coprecipitation–low pressure membrane filtration systems. Separation and Purification Technology. 2020. Vol. 241. P. 116644. DOI: 10.1016/j.seppur.2020.116644.

18. Kasiuliene A., Carabante I., Bhattacharya P., Caporale A. G., Adamo P., Kumpiene J. Removal of metal(oid)s from contaminated water using iron-coated peat sorbent. Chemosphere. 2018. Vol. 198. pp. 290–296. DOI: 10.1016/j.chemosphere.2018.01.139.

19. Pintor A. M.A., Vieira B. R.C., Santos S. C.R., Boaventura R. A.R., Botelho C. M.S. Arsenate and arsenite adsorption onto iron-coated cork granulates. Science of The Total Environment. 2018. Vol. 642. pp. 1075−1089. DOI: 10.1016/j.scitotenv.2018.06.170.

20. Inam M. A., Khan R., Lee K. H., Akram M., Ahmed Z., Lee K. G., Wie Y. M. Adsorption Capacities of Iron Hydroxide for Arsenate and Arsenite Removal from Water by Chemical Coagulation: Kinetics, Thermodynamics and Equilibrium Studies. Molecules. 2021. Vol. 26, no. 22. pp. 7046. DOI: 10.3390/molecules26227046.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.