Information and control elements of electric mining shovels

The analysis of history and logic of shoveling machinery development allows identifying the urgent objectives and major trends in improvement of control elements of electric mining shovels. The introduction of information technologies enables transition to the next stage in mining machine engineering based on intellectualization of management and on qualitative advance of automation, robotization and telecommunication facilities. The strategic program for fully automated mineral mining technology of Intelligent Surface Mine is currently implemented through modernization of all components of mechatronic mechanisms of shovels. The lead role in this process belongs to the information and control elements. The idea of engineering a new-generation shovel means designing a machine with large-scale control process management and with creation of an operator’s electronic brainwork associate capable to replace a team of executives. The shovel performance data after interpretation are accessible for all participants of control over life cycle of the machine. This can make it possible to elaborate new control principles for effectiveness, capacity and reliability of electric mining shovels. Degradation assessment, life prediction and hidden disfunction detection make a framework for the maintenance support to prevent emergency shutdowns and to reduce economic disbenefit due to unproductive time. Early detection of troubles ensures decreased risk of accidents, minimized down time, enhanced operational safety of personnel, maintenance cost saving, decreased replacement parts coverage and lower underwriting rates. The article gives the examples of new engineering solutions which ensure improved efficiency of mechatronic system in mining shovels.

Keywords: mining shovel, mechatronics, control, drive, efficiency, monitoring, trouble-shooting, telecommunication, reliability, endurance.
For citation:

Malafeev S. I., Malafeev S. S. Information and control elements of electric mining shovels. MIAB. Mining Inf. Anal. Bull. 2021;(4):33-45. [In Russ]. DOI: 10.25018/0236_ 1493_2021_4_0_33.

Acknowledgements:
Issue number: 4
Year: 2021
Page number: 33-45
ISBN: 0236-1493
UDK: 622.271.3
DOI: 10.25018/0236_1493_2021_4_0_33
Article receipt date: 27.05.2020
Date of review receipt: 12.10.2020
Date of the editorial board′s decision on the article′s publishing: 10.03.2021
About authors:

S.I. Malafeev, Dr. Sci. (Eng.), Professor, e-mail: simalafeev@gmail.com, Alexander and Nikolay Stoletovs Vladimir State University, 600000, Vladimir, Russia,
S.S. Malafeev, Cand. Sci. (Eng.), Lecturer, e-mail: Cepg87@gmail.com, Vladimir Polytechnic College, 600001, Vladimir, Russia.

 

For contacts:

S.I. Malafeev, e-mail: simalafeev@gmail.com.

Bibliography:

1. Shevkun E. B. Istoriya gornogo dela [History of mining], Khabarovsk, Izd-vo TOGU, 2015, 244 p.

2. Gayko G. I. Istoriya gornoy tekhniki [History of mining equipment], Alchevsk, DGMI, 2001, 134 p.

3. Raza M. A., Frimpong S. Cable shovel stress & fatigue modelling — Causes and Solution Strategies Review. Journal of Powder Metallurgy and Mining. 2013. S1-003. DOI: 10.4172/21689806.S1-003.

4. Ivanov S. L., Ivanova P. V., Kuvshinkin S. Yu. Assessment practices mining excavators promising the lineup in a live environment. Journal of Mining Institute. 2020, vol. 242, pp. 228— 233. DOI: 10.31897/PMI.2020.2.228.

5. Mikhina T. V. Accident rate in the mining industry: state-of-the-art. MIAB. Mining Inf. Anal. Bull. 2017, no 11, pp. 192–199. [In Russ]. DOI: 10.25018/0236-1493-2017-11-0-192-199.

6. Shariati H., Yeraliyev A., Terai B., Tafazoli S., Ramezani M. Towards autonomous mining via intelligent excavators. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops. 2019. Pp. 26—32. https://openaccess.thecvf.com/content_CVPRW_2019/html/cv4gc/Shariati_Towards_Autonomous_Mining_via_Intelligent_Excavators_CVPRW_2019_paper.html.

7. Lala A., Moyo M., Rehbach S., Sellscho R. Productivity in mining operations: Reversing the downward trend. Metals & Mining Practice. 2015. 13 p. https://www.mckinsey.com/industries/ metals-and-mining/our-insights/productivity-in-mining-operationsreversing-the-downward-trend.

8. Awuah-Offei K. Energy efficiency in mining: a review with emphasis on the role of operators in loading and hauling operations. Journal of Cleaner Production. 2016. Vol. 117. Pp. 89— 97. DOI: 10.1016/j.jclero.2016.01.035.

9. Levesque M., Millar D., Paraszczak J. Energy and mining — the home truths. Journal of Cleaner Production. 2014. Vol. 84. No 1. DOI: 10.1016/j.jclepro.2013.12.088.

10. Vladimirov D. Ya. Intelligent mining pit: evolution or revolution? MIAB. Mining Inf. Anal. Bull. 2015, no 45-1, pp. 77—82. [In Russ].

11. Konyukh V. L. Robototekhnika v gornom dele [Robotics in mining], Kemerovo, 1986, 60 p.

12. Kurtsev B. V., Zhdanov A. V. Methodological aspects of creating a unified information space at a mining enterprise. Gornyi Zhurnal. 2014, no 4, pp. 29—31. [In Russ].

13. Malafeev S. I., Tikhonov Yu. V. Automation of diagnostics of electrical equipment of mining machines based on workflow modeling. Avtomatizatsiya v promyshlennosti. 2014, no 7, pp. 9—13. [In Russ].

14. Dudley J. J., McAree R. Shovel Load Assist Project — ACARP Project Report C16031. Brisbane Qld Australia: ACARP (Australian Coal Industry Research Program), 2016. 130 p.

15. Chaowasakoo P., Seppälä H., Heikki K., Zhou Q. Digitalization of mine operations: Scenarios to benefit in real-time truck dispatching. International Journal of Mining Science and Technology. 2017. Vol. 27. No 2. Pp. 229—236. DOI: 10.1016/j.ijmst.2017.01.007.

16. Nam Lim S., Soares J., Zhou N. Tooth guard. A vision system for detecting missing tooth in rope mine shovel. 2016 IEEE Winter Conference on Applications of Computer Vision (WACV). 2016. DOI: 10.1109/WACV.2016.7477594.

17. Lynas D., Horberry T. Human factors issues with automated mining equipment. Ergonomics Open Journal. 2011. No 4. Pp. 74—80.

18. Bise C. J. (Ed.). Modern American coal mining. Methods and Applications. Society for Mining, Metallurgy and Exploration. 2013. 563 p.

19. Malafeev S. I., Malafeev S. S. On increasing the energy efficiency of electrical mine excavators. IOP Conference Series. Earth and Environmental Science. 2019. No 377. Article 012016. DOI: 10.1088/1755-377/1/012016.

20. Pandit P., Mazumdar J., May T., Koellner W. G. Real-time power quality meashurements from a conventional AC dragline. IEEE Transactions on Industry Applications. 2010. Vol. 46. No 5. Pp. 1755—1763. DOI: 10.1109/TIA.2010.2057470.

21. Shpreher D. M., Babokin G. I. System of technical diagnostic of electromechanical complexes. Kontrol'. Diagnostika. 2016, no 3, pp. 52—56. [In Russ].

22. Win Zaw Htay, Pevzner L. D., Temkin I. O. The structure of the information system walking dragline. Ugol’. 2019, no 1, pp. 34—36. [In Russ]. DOI: 10.18796/0041-5790-2019-1-34-36.

23. Malafeev S. I., Malafeev S. S., Tikhonov Y. V. Intelligent diagnostics of mechatronic system components of career excavators in operation. Studies in Computational Intelligence. 2018. Vol. 736. Pp. 110—116. DOI: 10.1007/978-3-319-66604-4_17.

24. Breido I. V., Sichkarenko A. V., Kotov E. S. Remote monitoring systems for high-voltage substations and mining machines at open pit coal mines. Journal of Mining Science. 2016. Vol. 52. No 5. Pp. 919—926.

25. Babokin G. I., Shprekher D. M., Kolesnikov E. B. Method of improving safe operation of mining machinery electrics by forecasting insulation resistance. MIAB. Mining Inf. Anal. Bull. 2020, no 2, pp. 34—45. [In Russ]. DOI: 10.25018/0236-1493-2020-2-0-34-45.

26. Popescu F. D., Radu S. M., Kotwica K., Kotwica K., Andras A., Brinas I. K. Dinescu S. Vibration analysis of a bucket wheel excavator boom using rayleigh’s damping model. New Trends in Production Engineering. 2019. Vol. 2. No 1. Pp. 233—241. DOI: 10.2478/ntpe-2019-0024.

27. Enyindah N. C., Amadi R. K. Using diagnosis and life cycle cost to improve reliability of an excavator. European Journal of Engineering Research and Science. 2019. Vol. 4. No 3. Pp. 21—26. DOI: 10.24018/ejers.2019.4.3.1107.

28. Zhou Q., Chen G., Jiang W., Li K. Automatically detecting excavator anomalies based on machine learning. Symmetry. 2019. Vol. 11. No 8. Pp. 1—18. DOI: 10.3390/sym11080957.

29. Ali D., Frimpong S. DeepImpact: a deep learning model for whole body vibration control using impact force monitoring. Neural Computing and Applications. 2020. Pp. 1—24. DOI: 10.1007/s00521-020-05218-6.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.