Standards creation for smart mining: intelligent transport for autonomous mineral transport

In recent years, there has been a trend in the mining industry towards an increase in the popularity of “smart” mining, which is capable of operating autonomously. This is due to several factors, including safety concerns and the high average age of personnel at mining enterprises. Smart mining is a technology that uses automated systems and algorithms to optimize mining processes. It allows you to increase the efficiency of production and the safety of working personnel. However, the lack of standardized requirements for smart mining has led to a variety of misaligned equipment. For this reason, active work is underway to create standards for automation systems. In addition, work is underway to develop intelligent systems for autonomous mining transport. These systems will automate the process of transporting goods and people at mining enterprises. Ways of introducing this technology to mining sites are also being investigated. In the process of developing this technology, it will be improved and increasingly implemented in various aspects of the mining industry. The introduction of smart mining is expected to lead to significant improvements in the efficiency and safety of the mining industry. This will allow businesses to reduce costs, increase productivity and provide safer working conditions for their employees.

Keywords: intelligent systems, mining, autonomous transport, standards of intelligent systems, autonomous operation, remote control, industrial equipment, control systems.
For citation:

Ereshchenko N. D., Andriyashin S. N., Borzenkov A. N., Rozhkova M. V. Standards creation for smart mining: intelligent transport for autonomous mineral transport. MIAB. Mining Inf. Anal. Bull. 2024;(11-1):239—250. [In Russ]. DOI: 10.25018/0236_1493_2024_111_0_239.

Acknowledgements:
Issue number: 11
Year: 2024
Page number: 239-250
ISBN: 0236-1493
UDK: 629.072:629.353:004.896
DOI: 10.25018/0236_1493_2024_111_0_239
Article receipt date: 01.07.2024
Date of review receipt: 04.09.2024
Date of the editorial board′s decision on the article′s publishing: 10.10.2024
About authors:

Ereshchenko N. D.1, assistant, e-mail: ereshhenko.2017@stud.nstu.ru, ORCID ID: 00090008-3162-7793;
Andriyashin S. N.1, assistant, e-mail: andriyashin.2014@corp.nstu.ru, ORCID ID: 00000003-1575-8933:
Borzenkov A. N.1, Junior Researcher, Research Department, e-mail: al-exxxe-y@mail.ru;
Rozhkova M. V.1, Senior Lecturer, e-mail: rozhkova@corp.nstu.ru, ORCID ID: 0000−0001−5039−2039;
1 Novosibirsk State Technical University, 630073, Novosibirsk, Russia.

 

For contacts:

Ereshchenko N. D., e-mail: ereshhenko.2017@stud.nstu.ru.

Bibliography:

1. Hazrathosseini A., Afrapoli A. M. The advent of digital twins in surface mining: Its time has finally arrived //Resources Policy. — 2023. — Vol. 80. — Pp. 103-155. DOI: 10.1016/j.resourpol.2022.103155.

2. Arash Amirteimuri, Erfan Babai Tirkolai, Alireza Amirteymuri, Amir Haqbaz, Vladimir Simic. A novel Parallel Heuristic Method for Designing a Sustainable Medical Waste Management System. Journal of Cleaner Production. 2024, No 452. DOI: 10.2139/ssrn.4530366.

3. Tian F., Li Zh., Wang F.-Y., Li L. Arallel learning-based steering control for autonomous driving, IEEE Trans. Intell. Veh., 2022. Vol. 8, iss. 10. DOI: 10.1109/TIV.2022.3173448.

4. Ge S., Wang F.-Y., Yang J., Ding Z., Wang X., Li Y., Teng S., Liu Z., Ai Y., & Chen L. Making standards for smart mining operations: Intelligent vehicles for autonomous mining transportation. IEEE Transactions on Intelligent Vehicles, 2022. 7(3), 413–416. https://doi. org/10.1109/tiv.2022.3197820.

5. Petrov A. I. Study of Rational Parameters of Technological Schemes of Auxiliary Mining Works. — 2023. — No1(20). — P. 4–39. [In Russ].

6. Chen L., Hu X., Wang G., Cao D., Li L., Wang F.-Y. Parallel Mining Operating Systems: From Digital Twins to Smart Mining, in Proc. IEEE Int. Conf. Digit. Twins Parallel Intell., 2021, pp. 469-473. DOI: 10.1109/DTPI52967.2021.9540195.

7. Shurov V. S. Intellectual Automobile Industry of the XXI Century: Problems and Prospects. / Information Technologies in Mining. — 2023. — No 3. — Pp. 45–50. [In Russ].

8. Stark K. S., Voitenkov S. S. Areas of application of unmanned vehicles in modern conditions. Collection of materials of the V International Scientific and Practical Conference “Architectural, Construction and Road Transport Complexes: Problems, Prospects, Innovations” (Omsk, 2021). –2021. pp. 260 — 265.

9. Chen L. Parallel Operating Systems for Mining: From Digital Twins to Mining Intelligence. Acta Automatica Sinica, 2021, vol. 47, no. 7, pp. 1633-1645.

10. Zhang X., Guo A., Ai Y., Tian B., Chen L. Real-Time Scheduling of Autonomous Mining Trucks via Flow Allocation-Accelerated Tabu Search, IEEE Trans. Intell. Veh. 2022. Vol. 7, iss. 3, pp. 466–479. DOI: 10.1109/TIV.2022.3166564.

11. Gusev I. S. Application of Robotic Vehicles for Autonomous Transportation of Minerals // Mining Business. — 2020. — No 5. — Pp. 56–63. [In Russ].

12. Wang F.-Y. Meta Vehicles in the metaverse: Moving to a new phase for intelligent vehicles and smart mobility, IEEE Trans. Intell. Veh. 2022. Vol. 7, no 1, pp. 1–5.

13. Zuenko A. A., Makedonov R. A., Oleynik Y. A. Intelligent search for precise solutions to the problem of open-pit mining planning. Data Analysis and Processing Systems, 2021. 3 (83), 99–114. [In Russ].

14. Markaryan A. O. Intelligent Algorithms for Assessing Safety Rules in Mining Operations by Autonomous Robotic Systems // XXVIII International Scientific and Technical Conference “Modern Technologies in the Tasks of Control, Automation and Information Processing”: Alushta. — 2019. — P. 86–87. [In Russ].

15. Rylnikova M. V., Fedotenko V. S., Esina E. N. Application of Intelligent Systems and Technologies in Open Development of Coal Deposits with High Overburden Benches. — 2018. — No. 1. — Pp. 32–36. [In Russ].

16. Varichev A. V., Kretov S. I., Ismagilov R. I., Badtiev B. P., Vladimirov D. Ya. Integrated Approach to Intelligent Mining Management Systems // Mining Industry. — 2016. — No. 3 (127). — Pp. 4–7. [In Russ].

17. Trubetskoy K. N., Rylnikova M. V., Klebanov D. A., Makeev M. A. Scientific and Technical Issues of Changing the Organization of Open-pit Mining Management with the Use of Robotic Quarry Equipment. Mining Industry, 2017. No. 5 (135), pp. 27–30. [In Russ].

18. Grebenkina I. A., Grebenkina S. A., Blagodir A. L. Current state and trends in the development of infocommunication transport infrastructure in the Russian Federation. Transport Law and Security, 2020. (1), 126-141. [In Russ].

19. Pokusaev O. N., Misharin A. S., Kupriyanovsky V. P., Klimov A. A. World market of autonomous (unmanned) cars. Modern Information Technologies and IT Education, 2018. 14(3), 737–747. [In Russ].

20. Shishkin P. V., Efremenkov E. A., Qi M. Development of a Mathematical Model of Operation Reliability of Mine Hoisting Plants. Mathematics. 2024, 12, 1843. DOI: 10.3390/ math12121843.

21. Martyushev N. V., Sorokova S. N., Efremenkov E. A., Valuev D. V., Qi M. Review Models and Methods for Determining and Predicting the Reliability of Technical Systems and Transport. Mathematics. 2023, 11, 3317. DOI: 10.3390/math11153317.

22. Valuev D. V., Qi M. Mathematical Logic Model for Analysing the Controllability of Mining Equipment. Mathematics. 2024, 12, 1660. DOI: 10.3390/math12111660.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.